首页> 外文OA文献 >Estimate of atmospheric predictability and development of prediction model using ensemble forecast assimilation in nonlinear dynamical system
【2h】

Estimate of atmospheric predictability and development of prediction model using ensemble forecast assimilation in nonlinear dynamical system

机译:非线性动力系统中集合可同化方法估计大气可预测性并建立预测模型

摘要

In this study, a limit of predictability for the atmosphere is estimated based on analog weather maps in the historical data, and a new type of ensemble forecast assimilation technique is developed in order to improve the forecast skill in the nonlinear dynamical system. The limit of the predictability (denoted as P) is defined as the time taken for the initial difference (E0) of the analog pair to reach the climate noise level which is defined by one standard deviation from the long term mean of the fluctuation in the observed atmosphere. Although a total of 185,547,600 pairs of the weather maps are searched, there are no good analog pairs to investigate the difference growth rate for a sufficiently small E0 of the analog pairs. For this reason, the behavior of E0 is explained by a quadratic error growth model. Regressing the quadratic error growth model to the scattergrambetween P and E0, it is estimated that P would extend 2.88 days when E0 is reduced to 1[?]e for sufficiently small E0. The limit of predictability P varies depending on variable bythe atmospheric boundary condition such as El Ni~no, La Ni~na, Pacific/North American (PNA), and North Atlantic Oscillation (NAO). In the case of PNA+ and NAO-, the differences of the analog pairs grow slower than the average showing the e-folding time of 3.17 and 3.07 days, respectively. Conversely, in the case of La Ni~na and PNA-, thedifferences grow faster than the average showing the e-folding time of 2.72 and 2.69 days,respectively. These results are also verified by hindcast datasets. ・・・
机译:在这项研究中,基于历史数据中的模拟天气图,估计了大气的可预测性极限,并且开发了一种新型的集合预报同化技术,以提高非线性动力系统中的预报技巧。可预测性的极限(表示为P)定义为模拟对的初始差(E0)达到气候噪声水平所花费的时间,该时间由相对于波动的长期平均值的一个标准偏差定义。观察到的气氛。尽管总共搜索了185,547,600对天气图,但没有足够的模拟对来调查足够小的E0对模拟对的差异增长率。因此,用二次误差增长模型来解释E0的行为。将二次误差增长模型回归到P和E0之间的散点图,估计对于足够小的E0,当E0减小到1 [e]时,P将延长2.88天。可预测性P的极限随大气边界条件(例如厄尔尼诺,拉尼娜,太平洋/北美(PNA)和北大西洋涛动(NAO))的变化而变化。在PNA +和NAO-的情况下,类似物对的差异增长速度慢于平均值,分别显示电子折叠时间为3.17天和3.07天。相反,在La Ni〜na和PNA-的情况下,差异的增长速度快于平均值,分别显示电子折叠时间为2.72天和2.69天。这些结果也由后播数据集验证。 ・ ・ ・

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号