首页> 外文OA文献 >Conditional Minimum Volume Ellipsoid with Applications to Subset Selection for MVE Estimator and Multiclass Discrimination
【2h】

Conditional Minimum Volume Ellipsoid with Applications to Subset Selection for MVE Estimator and Multiclass Discrimination

机译:条件最小体积椭球及其在MVE估计子集选择和多类判别中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a new formulation for constructing an ellipsoid which generalizes the computation of the minimum volume covering ellipsoid, based on the CVaR minimization technique proposed by Rockafellar and Uryasev (2002). The proposed ellipsoid construction is formulated as a convex optimization and an interior point algorithm for the solution can be developed. In addition, the optimization gives an upper bound of the volume of the ellipsoid associated with the MVE robust estimator, which fact can be exploited for approximate computations of the estimator.Also, potential applicability of the new ellipsoid construction is discussed through two statistical problems: 1) robust statistics computations including outlier detection and the computation of the MVE estimator; 2) a multiclass discrimination problem, where the maximization of the normal likelihood function is characterized in the context of the ellipsoid construction. Numerical results are given, showing the nice computational efficiency of the proposed interior point algorithm and the capability of the proposed generalization.
机译:在本文中,我们基于Rockafellar和Uryasev(2002)提出的CVaR最小化技术,提出了一种构建椭圆体的新公式,该公式概括了最小体积覆盖椭圆体的计算。提出的椭球构造被公式化为凸优化,并且可以为该解决方案开发一个内点算法。此外,优化还给出了与MVE鲁棒估计器关联的椭球体的上限,这一事实可用于估计器的近似计算。此外,还通过两个统计问题讨论了新椭球体构造的潜在适用性: 1)健壮的统计计算,包括异常值检测和MVE估计器的计算; 2)多类判别问题,其中正常似然函数的最大化是在椭球结构的背景下表征的。数值结果表明,所提出的内点算法具有很好的计算效率和泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号