首页> 外文OA文献 >Laminar-flow heat-transfer in non-circular ducts.
【2h】

Laminar-flow heat-transfer in non-circular ducts.

机译:非圆形管道中的层流传热。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A numerical method is employed to obtain solutionsudfor laminar flow heat transfer with fully developed velocityudprofiles and invariant fluid physical properties for rectangularudducts of various aspect ratios with the thermal boundaryudconditions of constant wall temperature and constant heatudinput per unit length of the duct. Since an analytical solutionudfor the fully developed velocity profile in a rectangular duct is available, the varying temperature profileudremains to be solved numerically from the energy equationudwhich is transformed into a finite difference form by meansudof two finite difference operators in two dimensions. Numericaludvalues of the initial and boundary temperatures are fixedudby choosing a suitable dimensionless temperature dependingudupon the, thermal boundary condition. As computation involvedudis very lengthy, a fast digital computer is required. Numericaludresults obtained from an I.C.T. Atlas computer areudpresented as the variation of the Nusselt number with theudGraetz number.udThe numerical method is extended to analyse heatudtransfer with simultaneously aeveloping velocity and temperatureudprofiles. To determine the development of the velocityudprofile, some simplifications of the Navier-Stokes equation are made. Results are presented for various aspect ratiosudwith the Prandtl number of 0.72. The effect of Prandtl numberudon heat transfer is also illustrated by numerical results.udThe numerical method is also used to solve for heatudtransfer in right-angled isosceles and equilateral triangularudducts with the same hydraulic and thermal boundary conditionsudas in the previous cases.udThe predicted results are compared with experimentaluddata. For constant wall temperature, they agree well forudGraetz numbers under 70; for constant heat input per unitudlength, closer agreement is shown over a much wider range ofudthe Graetz numbers. Accuracy of the numerical method isudconfirmed by the facts that variations of the predictedudNusselt numbers obtained here follow the same trends asudthose for circular ducts and parallel plates and at theudGraetz number of zero, they approach values of the limitingudNusselt numbers obtained by other methods.
机译:采用数值方法获得具有完全展开速度的层流传热的解 ud 轮廓和具有长宽比的矩形出料具有恒定的壁温和恒定热量 ud输入的条件下的矩形长形管道的不变流体物理特性管道的长度。由于可以得到矩形管道中完全展开的速度曲线的解析解 ud,因此需要根据能量方程 ud数值求解变化的温度曲线 ud,通过两个有限差分算符 ud将其转换为有限差分形式。二维。通过根据热边界条件选择合适的无量纲温度来固定初始温度和边界温度的数值。由于所涉及的计算非常冗长,因此需要一台快速的数字计算机。从I.C.T.获得的数值结果Atlas计算机表示为Nusselt数随udGraetz数的变化。ud扩展了数值方法,可以同时分析速度和温度的热传递。为了确定速度 udprofile的发展,对Navier-Stokes方程进行了一些简化。给出了各种宽高比 ud的结果​​,其Prandtl值为0.72。数值结果也说明了普朗特数乌冬面传热的影响。 ud在水力和热边界条件相同的情况下,数值方法也用于求解直角等腰和等边三角形加筋中的传热 ud。 ud将预测结果与实验 uddata进行比较。对于恒定的壁温,它们非常适合 udGraetz数小于70的值;对于恒定的单位热量输入/超长,在更大的格雷德数范围内显示出更接近的一致性。数值方法的准确性由以下事实所证实,即,此处获得的预测 udNusselt数的变化趋势与对于圆形导管和平行板的 uNus​​selt数趋势相同,并且 udGraetz数为零时,它们接近极限值通过其他方法获得的udNusselt数。

著录项

  • 作者

    Wibulswas P;

  • 作者单位
  • 年度 1966
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号