首页> 外文OA文献 >Kinetic study of hydrogen-material interactions in nickel base alloy 600 and stainless steel 316L through coupled experimental and numerical analysis
【2h】

Kinetic study of hydrogen-material interactions in nickel base alloy 600 and stainless steel 316L through coupled experimental and numerical analysis

机译:通过耦合实验和数值分析研究镍基合金600和316L不锈钢中氢材料相互作用的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In France all of the nuclear power plant facilities in service today are pressurized water reactors (PWR). Some parts of the PWR in contact with the primary circuit medium, such as the steam generator tubes (fabricated in nickel base alloy A600) and some reactor core internal components (fabricated in stainless steel 316L), can fall victim to environmental degradation phenomena such as stress corrosion cracking (SCC). In the late 1950's, H. Coriou observed experimentally and predicted this type of cracking in alloys traditionally renowned for their SCC resistance (A600). Just some 20 to 30 years later his predictions became a reality. Since then, numerous studies have focused on the description and comprehension of the SCC phenomenon in primary water under reactor operating conditions. In view of reactor lifetime extension, it has become both critical and strategic to be capable of simulating SCC phenomenon in order to optimize construction materials, operating conditions, etc. and to understand the critical parameters in order to limit the damage done by SCC. This study focuses on the role hydrogen plays in SCC phenomenon and in particular H-material interactions. Hydrogen, from primary medium in the form of dissolved H gas or H from the water, can be absorbed by the alloy during the oxidation process taking place under reactor operating conditions. Once absorbed, hydrogen may be transported across the material, diffusing in the interstitial sites of the crystallographic structure and interacting with local defects, such as dislocations, precipitates, vacancies, etc. The presence of these [local defect] sites can slow the hydrogen transport and may provoke local H accumulation in the alloy. This accumulation could modify the local mechanical properties of the material and favor premature rupture. It is therefore essential to identify the nature of these H-material interactions, specifically the rate of H diffusion and hydrogen trapping kinetics at these defects. Concerning these H-trap site interactions, literature presents very few complete sets of kinetic data; it is therefore necessary to study and characterize these interactions in-depth. This work is composed of two interdependent parts: (i) the development of a calculation code capable to manage these H-material interactions and (ii) to extract the kinetic constants for trapping and detrapping from experimental results in order to fuel the simulation code and create a solid database. Due to the complexity of industrial materials (A600 and SS316L), enquote{model materials} were elaborated using a series of thermomechanical treatments allowing for the study of simplified systems and the deconvolution of the different possible trapped and interstitial hydrogen contributions. These enquote{model} specimens were charged with deuterium (an isotopic hydrogen tracer) by cathodic polarization. After charging, specimens were subjected to thermal desorption mass spectroscopy (TDS) analysis where the deuterium desorption flux is monitored during a temperature ramp or at an isotherm. Interstitial diffusion and kinetic trapping and detrapping constants were extracted from experimental TDS spectra using a numerical fitting routine based upon the numerical resolution of the McNabb and Foster equations. This study allowed for the determination of the hydrogen diffusion coefficient in two alloys, Ni base alloy 600 and stainless steel 316L, and the kinetic trapping and detrapping constants at two trap site types, chromium carbides and dislocations. These constants will be used to construct a kinetic database which will serve as input parameters for a numerical model for the prediction and simulation of SCC in PWRs
机译:在法国,当今使用的所有核电站设施都是压水堆(PWR)。 PWR与主回路介质接触的某些部分,例如蒸汽发生器管(由镍基合金A600制造)和一些反应堆堆芯内部部件(由316L不锈钢制造),可能成为环境退化现象的受害者,例如应力腐蚀开裂(SCC)。在1950年代后期,H。Coriou进行了实验观察,并预测了传统上以抗SCC性(A600)闻名的合金中的这种开裂。大约20至30年后,他的预言变成了现实。从那时起,许多研究都集中于描述和理解反应堆运行条件下原水中的SCC现象。考虑到反应堆寿命的延长,能够模拟SCC现象以优化建筑材料,运行条件​​等并理解关键参数以限制SCC造成的损害已成为关键和战略性的问题。这项研究的重点是氢在SCC现象中的作用,尤其是氢与物质的相互作用。在反应器操作条件下进行的氧化过程中,合金中的氢会以溶解的氢气或水的形式从主要介质中吸收。氢一旦被吸收,就可能在整个材料中传输,在晶体结构的间隙位置扩散并与局部缺陷相互作用,例如位错,沉淀,空位等。这些[局部缺陷]位点的存在会减缓氢的传输并可能引起合金中的局部H积累。这种积累会改变材料的局部机械性能,并有利于过早破裂。因此,至关重要的是要确定这些氢-材料相互作用的性质,特别是在这些缺陷处氢的扩散速率和氢捕获动力学。关于这些H阱位点的相互作用,文献仅提供了很少的完整动力学数据集。因此,有必要深入研究和表征这些相互作用。这项工作由两个相互依存的部分组成:(i)开发能够处理这些H物质相互作用的计算代码,以及(ii)从实验结果中提取用于捕获和释放的动力学常数,以便为模拟代码提供动力。创建一个可靠的数据库。由于工业材料(A600和SS316L)的复杂性, enquote {模型材料}使用了一系列热机械处理方法进行了详细研究,从而可以研究简化的系统并解卷积不同的可能的俘获氢和间隙氢。这些模型样品通过阴极极化充入氘(同位素氢示踪剂)。充电后,对样品进行热脱附质谱(TDS)分析,其中在温度上升或等温线期间监测氘的脱附通量。基于McNabb和Foster方程的数值分辨率,使用数值拟合程序从实验TDS光谱中提取间隙扩散,动力学俘获和去俘获常数。这项研究可以确定两种合金(Ni基合金600和316L不锈钢)中的氢扩散系数,以及在两种捕集位点类型(碳化铬和位错)处的动态捕集和解吸常数。这些常数将用于构建动力学数据库,该动力学数据库将用作数值模型的输入参数,以预测和模拟压水堆中的SCC

著录项

  • 作者

    Hurley Caitlin Mae;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号