首页> 外文OA文献 >Multilevel optimization in infinity norm and associated stopping criteria
【2h】

Multilevel optimization in infinity norm and associated stopping criteria

机译:无限范数和相关停止准则中的多级优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis concerns the study of a multilevel trust-region algorithm in infinity norm, designed for the solution of nonlinear optimization problems of high size, possibly submitted to bound constraints. The study looks at both theoretical and numerical sides. The multilevel algorithm RMTR∞ that we study has been developed on the basis of the algorithm created by Gratton, Sartenaer and Toint (2008b), which was modified first by replacing the use of the Euclidean norm by the infinity norm and also by adapting it to solve bound-constrained problems. In a first part, the main features of the new algorithm are exposed and discussed. The algorithm is then proved globally convergent in the sense of Conn, Gould and Toint (2000), which means that it converges to a local minimum when starting from any feasible point. Moreover, it is shown that the active constraints identification property of the trust-region methods based on the use of a Cauchy step can be extended to any internal solver that satisfies a sufficient decrease property. As a consequence, this identification property also holds for a specific variant of our new algorithm. Later, we study several stopping criteria for nonlinear bound-constrained algorithms, in order to determine their meaning and their advantages from specific points of view, and such that we can choose easily the one that suits best specific situations. In particular, the stopping criteria are examined in terms of backward error analysis, which has to be understood both in the usual meaning (using a product norm) and in a multicriteria optimization framework. In the end, a practical algorithm is set on, that uses a Gauss-Seidel-like smoothing technique as an internal solver. Numerical tests are run on a FORTRAN 95 version of the algorithm in order to define a set of efficient default parameters for our method, as well as to compare the algorithm with other classical algorithms like the mesh refinement technique and the conjugate gradient method, on both unconstrained and bound-constrained problems. These comparisons seem to give the advantage to the designed multilevel algorithm, particularly on nearly quadratic problems, which is the behavior expected from an algorithm inspired by multigrid techniques. In conclusion, the multilevel trust-region algorithm presented in this thesis is an improvement of the previous algorithm of this kind because of the use of the infinity norm as well as because of its handling of bound constraints. Its convergence, its behavior concerning the bounds and the definition of its stopping criteria are studied. Moreover, it shows a promising numerical behavior.
机译:本文涉及对无穷范数的多级信任区域算法的研究,该算法旨在解决可能受到约束的高尺寸非线性优化问题。该研究从理论和数值两方面进行了研究。我们研究的多级算法RMTR∞是在Gratton,Sartenaer和Toint(2008b)创建的算法的基础上开发的,该算法首先通过用无穷大范数取代欧几里得范数的使用进行了修改,并通过对其进行适应解决约束约束的问题。在第一部分中,公开并讨论了新算法的主要特征。然后从Conn,Gould和Toint(2000)的意义上证明了该算法的全局收敛性,这意味着从任何可行点开始,该算法都收敛到局部最小值。而且,示出了基于柯西步骤的使用的信赖域方法的主动约束识别性质可以扩展到满足足够的减少性质的任何内部求解器。因此,此识别属性也适用于我们新算法的特定变体。后来,我们研究了非线性约束约束算法的几种停止准则,以便从特定的角度确定它们的含义和优势,以便我们可以轻松地选择最适合特定情况的一种准则。特别是,根据向后错误分析来检查停止标准,必须以通常的含义(使用产品规范)和多标准优化框架来理解该错误。最后,提出了一种实用的算法,该算法使用类似于Gauss-Seidel的平滑技术作为内部求解器。在FORTRAN 95版本的算法上进行数值测试,以便为我们的方法定义一组有效的默认参数,并将算法与其他经典算法(例如网格细化技术和共轭梯度法)进行比较。不受约束和受约束的问题。这些比较似乎为设计的多级算法提供了优势,尤其是在几乎二次问题上,这是受多网格技术启发的算法所期望的行为。总之,本文提出的多级信任区域算法由于对无穷范数的使用以及对边界约束的处理而对以前的这种算法进行了改进。研究了它的收敛性,关于边界的行为以及其停止标准的定义。而且,它显示出有希望的数值行为。

著录项

  • 作者

    Mouffe Mélodie;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号