首页> 外文OA文献 >Theoretical and experimental determination of effective diffusion and thermodiffusion coefficients in porous media
【2h】

Theoretical and experimental determination of effective diffusion and thermodiffusion coefficients in porous media

机译:多孔介质中有效扩散系数和热扩散系数的理论和实验确定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A multicomponent system, under nonisothermal condition, shows mass transfer with cross effects described by the thermodynamics of irreversible processes. The flow dynamics and convective patterns in mixtures are more complex than those of one-component fluids due to interplay between advection and mixing, solute diffusion, and thermal diffusion (or Soret effect). This can modify species concentrations of fluids crossing through a porous medium and leads to local accumulations. There are many important processes in nature and industry where thermal diffusion plays a crucial role. Thermal diffusion has various technical applications, such as isotope separation in liquid and gaseous mixtures, identification and separation of crude oil components, coating of metallic parts, etc. In porous media, the direct resolution of the convection-diffusion equations are practically impossible due to the complexity of the geometry; therefore the equations describing average concentrations, temperatures and velocities must be developed. They might be obtained using an up-scaling method, in which the complicated local situation (transport of energy by convection and diffusion at pore scale) is described at the macroscopic scale. At this level, heat and mass transfers can be characterized by effective tensors. The aim of this thesis is to study and understand the influence that can have a temperature gradient on the flow of a mixture. The main objective is to determine the effective coefficients modelling the heat and mass transfer in porous media, in particular the effective coefficient of thermodiffusion. To achieve this objective, we have used the volume averaging method to obtain the modelling equations that describes diffusion and thermodiffusion processes in a homogeneous porous medium. These results allow characterising the modifications induced by the thermodiffusion on mass transfer and the influence of the porous matrix properties on the thermodiffusion process. The obtained results show that the values of these coefficients in porous media are completely different from the one of the fluid mixture, and should be measured in realistic conditions, or evaluated with the theoretical technique developed in this study. Particularly, for low Péclet number (diffusive regime) the ratios of effective diffusion and thermodiffusion to their molecular coefficients are almost constant and equal to the inverse of the tortuosity coefficient of the porous matrix, while the effective thermal conductivity is varying by changing the solid conductivity. In the opposite, for high Péclet numbers (convective regime), the above mentioned ratios increase following a power law trend, and the effective thermodiffusion coefficient decreases. In this case, changing the solid thermal conductivity also changes the value of the effective thermodiffusion and thermal conductivity coefficients. Theoretical results showed also that, for pure diffusion, even if the effective thermal conductivity depends on the particle-particle contact, the effective thermal diffusion coefficient is always constant and independent of the connectivity of the solid phase. In order to validate the theory developed by the up-scaling technique, we have compared the results obtained from the homogenised model with a direct numerical simulation at the microscopic scale. These two problems have been solved using COMSOL Multiphysics, a commercial finite elements code. The results of comparison for different parameters show an excellent agreement between theoretical and numerical models. In all cases, the structure of the porous medium and the dynamics of the fluid have to be taken into account for the characterization of the mass transfer due to thermodiffusion. This is of great importance in the concentration evaluation in the porous medium, like in oil reservoirs, problems of pollution storages and soil pollution transport. Then to consolidate these theoretical results, new experimental results have been obtained with a two-bulb apparatus are presented. The diffusion and thermal diffusion of a helium-nitrogen and helium-carbon dioxide systems through cylindrical samples filled with spheres of different diameters and thermal properties have been measured at the atmospheric pressure. The porosity of each medium has been determined by construction of a 3D image of the sample made with an X-ray tomograph device. Concentrations are determined by a continuous analysing the gas mixture composition in the bulbs with a katharometer device. A transient-state method for coupled evaluation of thermal diffusion and Fick coefficients in two bulbs system has been proposed. The determination of diffusion and thermal diffusion coefficients is done by comparing the temporal experimental results with an analytical solution modelling the mass transfer between two bulbs. The results are in good agreement with theoretical results and emphasize the porosity of the medium influence on both diffusion and thermal diffusion process. The results also showed that the effective thermal diffusion coefficients are independent from thermal conductivity ratio and particle-particle touching.
机译:在非等温条件下,多组分系统表现出传质,并且具有不可逆过程的热力学所描述的交叉效应。由于对流与混合,溶质扩散和热扩散(或索雷特效应)之间的相互作用,混合物中的流动动力学和对流模式比单组分流体更复杂。这可以改变穿过多孔介质的流体的物质浓度,并导致局部积聚。在自然和工业中,有许多重要的过程,其中热扩散起着至关重要的作用。热扩散具有各种技术应用,例如液体和气体混合物中的同位素分离,原油成分的识别和分离,金属零件的涂层等。在多孔介质中,由于对流扩散方程的直接解析实际上是不可能的,这是因为几何形状的复杂性;因此,必须建立描述平均浓度,温度和速度的方程式。它们可以使用放大方法获得,其中在宏观尺度上描述了复杂的局部情况(通过对流和扩散在孔尺度上进行的能量传输)。在这个水平上,传热和传质可以通过有效的张量来表征。本文的目的是研究和理解温度梯度可能对混合物流动的影响。主要目的是确定模拟多孔介质中传热和传质的有效系数,特别是热扩散的有效系数。为了实现这一目标,我们使用了体积平均法来获得描述在均匀多孔介质中扩散和热扩散过程的建模方程。这些结果允许表征由热扩散引起的对传质的改性以及多孔基质性质对热扩散过程的影响。所得结果表明,在多孔介质中这些系数的值与一种流体混合物完全不同,应在实际条件下进行测量,或使用本研究开发的理论技术进行评估。特别是,对于低佩克利数(扩散状态),有效扩散和热扩散与它们的分子系数的比率几乎是恒定的,并且等于多孔基质的曲折系数的倒数,而有效导热系数是通过改变固体导热率来改变的。相反,对于高佩克利数(对流状态),上述比值随幂律趋势而增加,有效热扩散系数降低。在这种情况下,改变固体的导热系数也会改变有效的热扩散系数和导热系数。理论结果还表明,对于纯扩散,即使有效的热导率取决于颗粒间的接触,有效的热扩散系数也始终是恒定的,并且与固相的连通性无关。为了验证按比例放大技术开发的理论,我们将同质化模型获得的结果与微观尺度上的直接数值模拟进行了比较。这两个问题已使用商业有限元代码COMSOL Multiphysics解决。不同参数的比较结果表明,理论模型与数值模型之间具有很好的一致性。在所有情况下,必须考虑多孔介质的结构和流体动力学,以表征由于热扩散引起的传质。这对于诸如油藏中的多孔介质中的浓度评估,污染存储和土壤污染运输的问题非常重要。然后巩固这些理论结果,提出了用两灯泡装置获得的新实验结果。已经在大气压力下测量了氦-氮和氦-二氧化碳系统通过填充有不同直径和热特性的球形圆柱样品的扩散和热扩散。每种介质的孔隙率已通过使用X射线断层扫描仪设备制作的样品的3D图像确定。浓度是通过使用katharometer设备连续分析灯泡中的气体混合物成分来确定的。提出了一种瞬态方法,用于两个灯泡系统的热扩散和菲克系数的耦合评估。扩散系数和热扩散系数的确定是通过将​​时间实验结果与对两个灯泡之间的传质建模的解析解决方案进行比较来完成的。结果与理论结果吻合良好,并强调了介质的孔隙度对扩散和热扩散过程的影响。结果还表明,有效的热扩散系数与导热率和颗粒与颗粒的接触无关。

著录项

  • 作者

    Davarzani Hossein;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号