首页> 外文OA文献 >Simultaneous analysis of large INTEGRAL/SPI datasets: optimizing the computation of the solution and its variance using sparse matrix algorithms
【2h】

Simultaneous analysis of large INTEGRAL/SPI datasets: optimizing the computation of the solution and its variance using sparse matrix algorithms

机译:同时分析大型INTEGRAL / SPI数据集:使用稀疏矩阵算法优化解及其方差的计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.
机译:如今,分析和缩减越来越庞大的天文数据集已成为一项严峻的挑战,尤其是对于长的累积观测时间而言。 INTEGRAL / SPI X /γ射线光谱仪是一种仪器,必须对它同时进行多次曝光,以增加最弱光源的低信噪比。在这种情况下,传统的数据缩减方法效率低下,有时甚至根本不可行。同时处理数年的数据不仅需要计算大型方程组的解,还需要计算相关的不确定性。我们旨在减少计算时间和内存使用量。由于SPI传递函数是稀疏的,因此我们使用了一些流行的方法来求解大型稀疏线性系统。我们简要回顾一下这些方法。我们使用多面体大规模并行求解器(MUMPS)来计算方程组的解。我们还需要计算解的方差,这等于计算与线性系统相对应的稀疏矩阵逆的选定条目。这可以通过MUMPS软件的最新功能之一来实现,该功能部分是由于这项工作而引起的。在本文中,我们简要介绍了此功能,并评估了其在需要同时处理大型数据集的天体物理学问题(例如研究整个银河系)上的有效性。我们使用这些算法来解决由SPI数据处理引起的大型稀疏系统,并获得其解和相关的方差。总之,由于有了这些新开发的工具,现在可以在合理的执行时间和较低的内存使用情况下处理SPI产生的大型数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号