This thesis leads to a better knowledge of the physic and of the control of acoustic radiation in turbulent single and dual-stream jets.It is known that jet noise is produced by the turbulence present in the jet that can be separated in large coherent structures and fine structures. It is also concluded that these large-scale coherent structures are the instability waves of the jet and can be modelled as the flow field generated by the evolution of instability waves in a given turbulent jet. The growth rate and the streamwise wavenumber of a disturbance with a fixed frequency and azimuthal wavenumber are obtained by solving the non-local approach called Parabolized Stability Equations (PSE). Typically the Kelvin-Helmholtz instability owes its origin into the shear layer of the flow and, moreover, the inflection points of the mean velocity profile has a crucial importance in the instability of such a flow. The problem is more complex in case of imperfectly expanded jet where shock-cells manifest inside the jet and strongly interaction with the instability waves has been observed. Several configurations are tested in this thesis, from a subsonic incompressible case to the dual-stream underexpanded supersonic jet obtained by solving Large Eddy Simulations LES (CERFACS). The acoustic far-field is determined by the Ffowcs-Williams-Hawkings acoustic analogy. Then a sensitivity analysis of the jet with respect to external forcing acting in a localized region of the flow are investigated by solving the adjoint PSE equations. High sensitivity appeared in the shear-layer of the flow showing, also, a high dependency in the streamwise and radial direction. In the case of dual-stream jet the propagation of the instability in the inner and outer shear layer should be taken into account. This configuration leads to two different distinct Klevin-Helmholtz modes that are computed separately. The highest sensitivity is determined in the exit of the nozzle outside of the potential core of the jet. In addition, comparison between sensitivity computed by adjoint equations and Uncertainty Quantification (UQ) methods has been done, in the case of a single-stream jet, showing a link between these two methods for small variations of the input parameters. This result leads to the application of a lower cost tool for mathematical analysis of complex problem of industrial interest. This work and in particular the sensitivity theory investigated in this thesis contribute to a development of a new noise control strategy for aircraft jet.
展开▼