首页> 外文OA文献 >Simulations of one and two-phase flows in porous microstructures, from tomographic images of gas diffusion layers of proton exchange membrane fuel cells
【2h】

Simulations of one and two-phase flows in porous microstructures, from tomographic images of gas diffusion layers of proton exchange membrane fuel cells

机译:质子交换膜燃料电池气体扩散层的层析图像模拟多孔微结构中的一相和两相流动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrogen as an energy carrier is a promising solution for reducing emissions of greenhouse gases. Indeed, hydrogen can be used to store large amounts of energy in a completely carbon-free way. To promote the widespread use of hydrogen energy, it is essential to reduce the cost of fuel cells and increase their durability and performance. The materials in the heart of fuel cells have a strong impact on their performance and durability. In this context, opti-mizing the materials is crucial. We develop in this thesis a modeling approach of porous materials in proton exchange membrane fuel cells. We focus on a specific material that takes part in the gas diffusion layers (GDL). The gas diffusion layers are crossed by gas, electron, heat and water fluxes. To allow such multiple transports, GDL are composed of a fluid phase and a solid phase, itself consisting of several materials. The microstructure of the GDL plays an essential role on the tradeoffs between transports. To model these tradeoffs, we use X-ray tomography to image the microstructure at micrometer scales, and develop digital tools to simulate the transport on tomographic images. We validate the simulations with experimental characterizations and tomographic images of GDL. Great care has been taken in the computer performance of the numerical tools, because tomographic images in three dimensions are a challenge because of the size of the data. The first chapter of this thesis is devoted to modeling of an ex-situ water injection experiment in a GDL. We develop a pore network model extracted from tomographic images, to simulate liquid water flows in GDL in the presence of ca-pillary forces. We validate pore networks simulations using tomographic images showing the liquid water in a GDL dur-ing a water injection experiment. We show that the capillary pressure curves can be determined reliably by pore net-work simulations or full morphology simulations on tomographic images. The second chapter is devoted to one-phase transport simulations in GDL. The first part of this chapter is devoted to the development of pore networks simulations for the diffusivity and the electrical conductivities of the GDL. We de-velop a two-scale simulation methodology, which consists of decomposing the image into elements having simple shapes, and to calibrate physical models on these elements. This method considers the effect of the microstructure on the physical transfers in an economical way, reducing the computing time. We compare the pore network simulations to direct simulation on microstructures and to analytical formulas. The second part is devoted to the comparison of transport simulations with experimental measurements. We show that the transports in the fluid phase can be deter-mined reliably by direct simulations on the tomographic images, while transports in the solid phase require additional information not provided by X-ray tomography. The third chapter is devoted to modeling of the condensation of water in the GDL. The steam produced by the reaction of the hydrogen with the oxygen passes through the GDL and condenses in the cold areas of the GDL. A pore network model coupling diffusion of steam, phase change and capillary forces is developed. We study this model on virtually generated pore networks. The last chapter is devoted to the study of virtually designed microstructures. Virtually exploring new materials designs has advantages over the experimental approach, in terms of speed, cost and control over the microstructures. We show that it is possible to virtually produce microstructures close to those of real materials, to seek optimal microstructures, and control the microstructure to better study some physical effects using simulation.
机译:氢作为能源载体是减少温室气体排放的有前途的解决方案。实际上,氢可以用来以完全无碳的方式存储大量能量。为了促进氢能的广泛使用,必须降低燃料电池的成本并提高其耐用性和性能。燃料电池心脏中的材料对其性能和耐用性有很大影响。在这种情况下,优化材料至关重要。在本文中,我们开发了质子交换膜燃料电池中多孔材料的建模方法。我们专注于参与气体扩散层(GDL)的特定材料。气体扩散层与气体,电子,热和水通量交叉。为了允许这种多重传输,GDL由液相和固相组成,而固相本身由几种材料组成。 GDL的微观结构在运输之间的权衡中起着至关重要的作用。为了对这些折衷进行建模,我们使用X射线断层扫描在微米级上对微观结构进行成像,并开发数字工具来模拟断层图像上的传输。我们用实验特征和GDL断层图像来验证模拟。数值工具的计算机性能受到了极大的关注,因为三维的断层图像由于数据的大小而成为一个挑战。本论文的第一章致力于在GDL中对异地注水实验进行建模。我们开发了从断层图像中提取的孔隙网络模型,以模拟在存在ca-毛细管力的情况下GDL中的液态水流动。我们使用层析图像来验证孔隙网络模拟,该层析图像显示了注水实验期间GDL中的液态水。我们显示毛细管压力曲线可以通过层析成像图像上的孔网络模拟或完整形态模拟可靠地确定。第二章专门介绍GDL中的单相传输模拟。本章的第一部分致力于开发GDL的扩散率和电导率的孔隙网络模拟。我们开发了一种两级模拟方法,该方法包括将图像分解为具有简单形状的元素,并在这些元素上校准物理模型。该方法以经济的方式考虑了微观结构对物理传输的影响,从而减少了计算时间。我们将孔隙网络模拟与直接模拟微观结构和解析公式进行了比较。第二部分致力于将运输模拟与实验测量进行比较。我们表明,可以通过对断层图像进行直接模拟来可靠地确定液相中的传输,而固相中的传输则需要X射线断层扫描无法提供的其他信息。第三章专门介绍了GDL中水的冷凝模型。氢与氧反应产生的蒸汽通过GDL,并在GDL的较冷区域冷凝。建立了耦合蒸汽扩散,相变和毛细作用力的孔隙网络模型。我们在虚拟生成的孔网络上研究了该模型。最后一章专门研究虚拟设计的微观结构。在速度,成本和对微结构的控制方面,虚拟探索新材料设计比实验方法更具优势。我们表明,有可能虚拟地产生接近于真实材料的微观结构,以寻求最佳的微观结构,并控制该微观结构以通过仿真更好地研究某些物理效应。

著录项

  • 作者

    Agaesse Tristan;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号