首页> 外文OA文献 >On the assimilation of SWOT type data into 2D shallow-water models
【2h】

On the assimilation of SWOT type data into 2D shallow-water models

机译:将SWOT类型数据同化到2D浅水模型中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission.
机译:在河流水力学中,对测量站的水位测量值的同化得到了很好的控制,而图像的同化仍然微妙。在当前的演讲中,我们讨论了卫星地图信息的丰富性以约束二维浅水模型,但也涉及到相关的困难。 2D浅层模型对于小规模建模(尤其是对于低水位和洪水平原流)可能是必需的。由于在这两种情况下,湿干前沿的动力学特性都是必不可少的,因此必须精心设计鲁棒而精确的求解器。在本文中,我们介绍了鲁棒的二阶,稳定有限体积方案[CoMaMoViDaLa]。将真实相似的测试用例与更多经典的求解器进行比较,凸显了准确的泛洪平原建模的重要性。在洪泛平原水流案例[LaMo] [HoLaMoPu]中,进行了初步的逆研究。第一步,零阶数据处理模型可提高观测员的水平,并从粗略的测量值[PuRa]中得出更可靠的水位。然后,由于基于梯度计算和伴随方程的变化敏感性,可以更好地理解模型和流动行为。它可以揭示出模型设计师必须解决的几个困难。接下来,与空间数据一起使用的4D-Var数据同化算法可改善模型校准,并有可能识别河流流量。所有算法均在DassFlow软件(Fortran,MPI,伴随)[Da]中实现。目前正在执行所有这些结果和实验(准确的干湿前动态,敏感性分析,排放物识别和模型校准),以使用来自未来SWOT任务的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号