首页> 外文OA文献 >Bayesian fusion of multispectral and hyperspectral images with unknown sensor spectral response
【2h】

Bayesian fusion of multispectral and hyperspectral images with unknown sensor spectral response

机译:具有未知传感器光谱响应的多光谱和高光谱图像的贝叶斯融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies a new Bayesian algorithm for fusing hyperspectral and multispectral images. The observed images are related to the high spatial resolution hyperspectral image to be recovered through physical degradations, e.g., spatial and spectral blurring and/or sub-sampling defined by the sensor characteristics. In this work, we assume that the spectral response of the multispectral sensor is unknown as it may not be available in practical applications. The resulting fusion problem is formulated within a Bayesian estimation framework, which is very convenient to model the uncertainty regarding the multispectral sensor characteristics and the scene to be estimated. The high spatial resolution hyperspectral image is then inferred from its posterior distribution. More precisely, to compute the Bayesian estimators associated with this posterior, a Markov chain Monte Carlo algorithm is proposed to generate samples asymptotically distributed according to the distribution of interest. Simulation results demonstrate the efficiency of the proposed fusion method when compared with several state-of-the-art fusion techniques.
机译:本文研究了一种新的融合高光谱和多光谱图像的贝叶斯算法。所观察到的图像与要通过物理退化(例如,由传感器特性定义的空间和光谱模糊和/或子采样)进行恢复的高空间分辨率高光谱图像有关。在这项工作中,我们假设多光谱传感器的光谱响应是未知的,因为在实际应用中可能无法获得。由此产生的融合问题是在贝叶斯估计框架内制定的,它非常方便地为有关多光谱传感器特性和待估计场景的不确定性建模。然后从其后分布推断高空间分辨率高光谱图像。更精确地,为了计算与此后验相关的贝叶斯估计量,提出了一种马尔可夫链蒙特卡罗算法来根据感兴趣的分布生成渐近分布的样本。与几种最新的融合技术相比,仿真结果证明了所提出的融合方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号