首页> 外文OA文献 >Adaptive variation in coral geometry and the optimization of internal colony light climates
【2h】

Adaptive variation in coral geometry and the optimization of internal colony light climates

机译:珊瑚几何形状的适应性变化和内部殖民地光照气候的优化

摘要

1. The ability of photosynthetic organisms to adjust their light climate has high adaptive significance because irradiance can vary spatially by orders of magnitude. Using a plating (foliaceous) coral species (Turbinaria mesenterina), we tested the hypothesis that plasticity of colony geometry optimizes internal irradiance distributions.udud2. We developed a two-dimensional model to predict the internal irradiance distribution of a foliaceous colony as a function of its geometry. Field tests showed that the model explained 85% of the variation in irradiance within colonies of T. mesenterina with minimal bias.udud3. Colony plate angle, plate spacing and range of tissue distributions into the colony were exponential functions of water depth. In shallow water plates tended to be nearly vertical, narrowly spaced, and had living tissue only near the growing edge of the plate. In deep water plates grew more horizontally, were more widely spaced, and had living tissue extending well into the colony interior. This pattern of phenotypic plasticity effectively evens out differences in within-colony irradiances.udud4. We compared within-colony irradiance distributions across light habitats (depth), based on the observed variation in colony geometry with water depth. Despite fourfold differences in environmental irradiance, within-colony irradiances had a common mode of 100–200 µmol m−2 s−1. This is near the hypothesized photosynthetic optimum defined by the upper limit of the subsaturation parameter (Ek) of the photosynthesis–irradiance curve.udud5. Our study demonstrates that phenotypic plasticity of colony geometry is an important mechanism for regulating light capture during growth in T. mesenterina, and facilitates near-optimal internal irradiances across a wide range of environmental light regimes.
机译:1.光合生物调节光照环境的能力具有很高的适应性意义,因为辐照度在空间上可以变化几个数量级。我们使用平板(叶质)珊瑚物种(Turbinaria mesenterina)来验证假说,菌落几何形状的可塑性优化了内部辐照度分布。 ud ud2。我们开发了一个二维模型来预测叶集落的内部辐照度分布作为其几何形状的函数。现场测试表明,该模型解释了T. mesenterina菌落内辐照度变化的85%,且偏差极小。菌落板角,菌落间距和进入菌落的组织分布范围是水深的指数函数。在浅水中,板块趋于接近垂直,间隔狭窄,并且仅在板块的生长边缘附近具有活组织。在深水中,板块更水平地生长,间距更大,并且活组织很好地延伸到菌落内部。这种表型可塑性模式有效地平缓了殖民地辐照度之间的差异。 ud ud4。我们根据观察到的菌落几何形状随水深的变化,比较了不同光照生境(深度)的菌落内辐照度分布。尽管环境辐照度有四倍的差异,但菌落内辐照度的共同模式为100–200 µmol m-2 s-1。这接近于光合作用-辐照度曲线的亚饱和参数(Ek)的上限所定义的假设光合作用最佳值。 ud ud5。我们的研究表明,菌落几何的表型可塑性是调节肠系膜T. mesenterina生长过程中光捕获的重要机制,并在广泛的环境光环境下促进近乎最佳的内部辐照度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号