首页> 外文OA文献 >Machine learning assembly landscapes from particle tracking data
【2h】

Machine learning assembly landscapes from particle tracking data

机译:来自粒子跟踪数据的机器学习装配图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways. © 2015 The Royal Society of Chemistry
机译:自下而上的自组装为新型结构和功能材料的制造提供了一条有力的途径。自组装系统的合理工程需要了解可访问的聚集状态和结构组装路径。在这项工作中,我们将非线性机器学习应用于实验粒子跟踪数据,以推断出低维组装态势,将可访问聚集体的形态,稳定性和组装路径映射为实验条件的函数。据我们所知,这是首次直接从实验数据中推断出集体订单参数和装配图。我们将这种技术应用于振荡电场中金属电Janus胶体的非平衡自组装,并量化了场强,振荡频率和盐浓度对主要组装途径和末端聚集体的影响。这种组合的计算和实验框架为自组装系统提供了新的理解,并定量地告知了合理的实验条件工程,以沿着所需的聚集路径驱动组装。 ©2015皇家化学学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号