首页> 外文OA文献 >A novel structure-aware sparse learning algorithm for brain imaging genetics
【2h】

A novel structure-aware sparse learning algorithm for brain imaging genetics

机译:一种用于脑成像遗传学的新颖的结构感知稀疏学习算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are designed using the soft threshold strategy, which assumes that the features in the data are independent from each other. This independence assumption usually does not hold in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the independence assumption for the input data, but also incorporate group-like structure in the model. Empirical comparison with a widely used SCCA implementation, on both simulated and real imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and biologically meaningful findings.
机译:脑成像遗传学是一个新兴的研究领域,其中评估了诸如单核苷酸多态性(SNP)和神经影像定量特征(QT)等遗传变异之间的关联。稀疏规范相关分析(SCCA)是一种双多变量分析方法,具有揭示复杂的多SNP-多QT关联的潜力。现有的大多数SCCA算法都是使用软阈值策略设计的,该算法假定数据中的特征彼此独立。这种独立性假设通常在成像遗传数据时不成立,因此不可避免地限制了产生最佳解的能力。我们提出了一种新颖的可感知结构的SCCA(称为S2CCA)算法,该算法不仅消除了输入数据的独立性假设,而且在模型中纳入了类群结构。在模拟和真实成像遗传数据上与广泛使用的SCCA实现进行的经验比较表明,S2CCA可以提高预测性能和生物学意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号