首页> 外文OA文献 >Decision Support from Local Data: Creating Adaptive Order Menus from Past Clinician Behavior
【2h】

Decision Support from Local Data: Creating Adaptive Order Menus from Past Clinician Behavior

机译:本地数据的决策支持:根据过去的临床医生行为创建自适应的订单菜单

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ObjectiveReducing care variability through guidelines has significantly benefited patients. Nonetheless, guideline-based clinical decision support (CDS) systems are not widely implemented or used, are frequently out-of-date, and cannot address complex care for which guidelines do not exist. Here, we develop and evaluate a complementary approach - using Bayesian network (BN) learning to generate adaptive, context-specific treatment menus based on local order-entry data. These menus can be used as a draft for expert review, in order to minimize development time for local decision support content. This is in keeping with the vision outlined in the US Health Information Technology Strategic Plan, which describes a healthcare system that learns from itself.Materials and MethodsWe used the Greedy Equivalence Search algorithm to learn four 50-node domain-specific BNs from 11,344 encounters: abdominal pain in the emergency department, inpatient pregnancy, hypertension in the urgent visit clinic, and altered mental state in the intensive care unit. We developed a system to produce situation-specific, rank-ordered treatment menus from these networks. We evaluated this system with a hospital-simulation methodology and computed Area Under the Receiver-Operator Curve (AUC) and average menu position at time of selection. We also compared this system with a similar association-rule-mining approach.ResultsA short order menu on average contained the next order (weighted average length 3.91–5.83 items). Overall predictive ability was good: average AUC above 0.9 for 25% of order types and overall average AUC .714–.844 (depending on domain). However, AUC had high variance (.50–.99). Higher AUC correlated with tighter clusters and more connections in the graphs, indicating importance of appropriate contextual data. Comparison with an association rule mining approach showed similar performance for only the most common orders with dramatic divergence as orders are less frequent.Discussion and ConclusionThis study demonstrates that local clinical knowledge can be extracted from treatment data for decision support. This approach is appealing because: it reflects local standards; it uses data already being captured; and it produces human-readable treatment-diagnosis networks that could be curated by a human expert to reduce workload in developing localized CDS content. The BN methodology captured transitive associations and co-varying relationships, which existing approaches do not. It also performs better as orders become less frequent and require more context. This system is a step forward in harnessing local, empirical data to enhance decision support.
机译:目的通过指南减少护理变异性使患者受益匪浅。但是,基于指南的临床决策支持(CDS)系统并未得到广泛实施或使用,经常过时,并且无法解决不存在指南的复杂护理。在这里,我们开发和评估一种补充方法-使用贝叶斯网络(BN)学习基于本地订单输入数据生成自适应的,特定于上下文的治疗菜单。这些菜单可用作专家审阅的草稿,以最大程度地缩短本地决策支持内容的开发时间。这与《美国健康信息技术战略计划》中概述的愿景相吻合,该计划描述了一个可以自我学习的医疗系统。材料和方法我们使用贪婪等效搜索算法从11344次遭遇中学习了四个50个节点特定的BN:急诊科的腹痛,住院妊娠,急诊门诊的高血压,重症监护病房的精神状态改变。我们开发了一个系统,可以从这些网络中生成针对特定情况,按等级排序的治疗菜单。我们使用医院模拟方法评估了该系统,并计算了选择时接收者-操作者曲线下的面积(AUC)和平均菜单位置。我们还将该系统与类似的关联规则挖掘方法进行了比较。结果平均而言,短订单菜单包含下一个订单(加权平均长度为3.91-5.83项)。总体预测能力良好:25%的订单类型的平均AUC高于0.9,总体平均AUC为.714–.844(取决于领域)。但是,AUC的方差很高(.50–.99)。较高的AUC与图中更紧密的群集和更多的关联相关,表明适当的上下文数据的重要性。与关联规则挖掘方法的比较显示,只有最常见的订单具有相似的性能,并且订单的频繁程度有所降低。讨论和结论本研究表明,可以从治疗数据中提取局部临床知识以提供决策支持。这种方法之所以吸引人,是因为:它反映了本地标准;它使用已经捕获的数据;它产生了人类可读的治疗诊断网络,人类专家可以对其进行策划,以减少开发本地CDS内容的工作量。 BN方法捕获了传递关联和同变关系,而现有方法则没有。当订单变得不那么频繁并且需要更多上下文时,它的性能也会更好。该系统是在利用本地经验数据以增强决策支持方面迈出的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号