首页> 外文OA文献 >High-Temperature Behaviour of Austenitic Alloys : Influence of Temperature and Strain Rate on Mechanical Properties and Microstructural Development
【2h】

High-Temperature Behaviour of Austenitic Alloys : Influence of Temperature and Strain Rate on Mechanical Properties and Microstructural Development

机译:奥氏体合金的高温行为:温度和应变速率对力学性能和显微组织发展的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The global increase in energy consumption and the global warming from greenhouse gas emission creates the need for more environmental friendly energy production processes. Biomass power plants with higher efficiency could generate more energy but also reduce the emission of greenhouse gases, e.g. CO2. Biomass is the largest global contributor to renewable energy and offers no net contribution of CO2 to the atmosphere. One way to increase the efficiency of the power plants is to increase temperature and pressure in the boiler parts of the power plant. The materials used for the future biomass power plants, with higher temperature and pressure, require improved properties, such as higher yield strength, creep strength and high-temperature corrosion resistance. Austenitic stainless steels and nickel-base alloys have shown good mechanical and chemical properties at the operation temperatures of today’s biomass power plants. However, the performance of austenitic stainless steels at the future elevated temperatures is not fully understood. The aim of this licentiate thesis is to increase our knowledge about the mechanical performance of austenitic stainless steels at the demanding conditions of the new generation power plants. This is done by using slow strain rate tensile deformation at elevated temperature and long term hightemperature ageing together with impact toughness testing. Microscopy is used to investigate deformation, damage and fracture behaviours during slow deformation and the long term influence of temperature on toughness in the microstructure of these austenitic alloys. Results show that the main deformation mechanisms are planar dislocation deformations, such as planar slip and slip bands. Intergranular fracture may occur due to precipitation in grain boundaries both in tensile deformed and impact toughness tested alloys. The shape and amount of σ-phase precipitates have been found to strongly influence the fracture behaviour of some of the austenitic stainless steels. In addition, ductility is affected differently by temperature depending on alloy tested and dynamic strain ageing may not always lead to a lower ductility.
机译:全球能源消耗的增加以及温室气体排放导致的全球变暖,导致了对更加环保的能源生产过程的需求。效率更高的生物质发电厂可以产生更多的能量,但也可以减少温室气体的排放,例如二氧化碳生物质是全球可再生能源的最大贡献者,对大气没有提供二氧化碳的净贡献。提高电厂效率的一种方法是提高电厂锅炉部件的温度和压力。用于未来的生物质发电厂的材料具有较高的温度和压力,因此需要改进的性能,例如更高的屈服强度,蠕变强度和高温耐腐蚀性。在当今生物质发电厂的运行温度下,奥氏体不锈钢和镍基合金表现出良好的机械和化学性能。但是,人们对奥氏体不锈钢在未来高温下的性能尚不完全了解。本许可论文的目的是增加我们对新一代电厂苛刻条件下奥氏体不锈钢力学性能的了解。这是通过在高温下使用慢应变速率拉伸变形和长期高温老化以及冲击韧性测试来完成的。显微镜用于研究缓慢变形过程中的变形,破坏和断裂行为,以及温度对这些奥氏体合金显微组织中韧性的长期影响。结果表明,主要的变形机制是平面位错变形,如平面滑移和滑移带。在拉伸变形和冲击韧性试验合金中,由于晶界的沉淀,可能会发生晶间断裂。已经发现σ相沉淀物的形状和数量会严重影响某些奥氏体不锈钢的断裂行为。此外,延展性受温度影响的程度取决于所测试的合金,并且动态应变时效可能并不总是导致延展性降低。

著录项

  • 作者

    Calmunger, Mattias;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号