首页> 外文OA文献 >Expected Future Value Decomposition Based Bid Price Generation For Large-scale Network Revenue Management
【2h】

Expected Future Value Decomposition Based Bid Price Generation For Large-scale Network Revenue Management

机译:基于预期未来价值分解的投标价格生成,用于大规模网络收入管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies a multi-stage stochastic programming (SP) model for large-scale network revenue management. We solve the model by means of the so-called Expected Future Value (EFV) decomposition via scenario analysis, estimating the impact of the decisions made at a given stage on the objective function value related to the future stages. The EFV curves are used to define bid prices on bundles of resources directly, as opposed to the traditional additive approach. We compare our revenues to those obtained by additive bid prices, such that the bid prices derived from the Deterministic Equivalent Model (DEM) of the compact representation of the SP model. Our computational experience shows that the revenues obtained by our approach are better for middle-range values of the load factor of demand, while the differences among all the approaches we have tested are insignificant for extreme values. Moreover, our approach requires significantly less computation time than the optimization of DEM by plain use of optimization engines. Problem instances with 72 pairs of bundle-fare classes have been solved in less than 1 minute, with 800 pairs in less than 5 minutes, and with 4000 pairs in less than 1 hour. The time taken by DEM was, in general, of one order of magnitude higher. Finally, for the three largest problem instances, and after 2 hours, the expected revenue returned by DEM was below that obtained by EFV by 13.47%, 17.14%, 38.94%, respectively.
机译:本文研究了用于大规模网络收入管理的多阶段随机规划(SP)模型。我们通过情景分析通过所谓的预期未来价值(EFV)分解来求解模型,估算在给定阶段做出的决策对与未来阶段相关的目标函数值的影响。与传统的累加方法相反,EFV曲线用于直接定义资源捆绑上的投标价格。我们将收入与通过附加投标价格获得的收入进行比较,以使投标价格源自SP模型的紧凑表示形式的确定性等效模型(DEM)。我们的计算经验表明,通过我们的方法获得的收入对于需求的负载因子的中间范围值更好,而我们测试的所有方法之间的差异对于极端值而言都是微不足道的。而且,我们的方法比通过简单地使用优化引擎来优化DEM所需的计算时间少得多。在不到1分钟的时间内即可解决具有72对捆绑票价类的问题实例,在不到5分钟的时间内解决了800对问题实例,在不到1小时的时间内解决了4000对问题实例。通常,DEM所花费的时间要高一个数量级。最后,对于三个最大的问题实例,在两个小时后,DEM返回的预期收入分别比EFV获得的预期收入低了13.47%,17.14%,38.94%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号