首页> 外文OA文献 >The Macroscopic Chemistry Method in the Direct Simulation Monte-Carlo (DSMC) method for rarefed flows
【2h】

The Macroscopic Chemistry Method in the Direct Simulation Monte-Carlo (DSMC) method for rarefed flows

机译:直接模拟蒙特卡洛(DSMC)方法对稀有流的宏观化学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Macroscopic Chemistry Method is a new DSMC approach to the calculation of chemical reactions in rarefied flows. MCM uses all the information available in a DSMC computation, to model the chemical reactions. It de-couples the reaction events (the replacement of simulator particles representing one species with particles representing a different species) from the collision calculations. The reaction rate is derived from the theoretical equilibrium reaction rate, consistent with the mean energy (temperature) of all the simulator particles in a cell, and is adjusted to account for the actual number of sufficiently high energy collisions which actually occur, as the result of the non-equilibrium distribution of molecular velocities. Multi-temperature reaction rates (emph{e.g.} Parku27s model which accounts for vibrational-dissociation coupling) are easily simulated. Unlike the standard total collision energy TCE method (a collision based chemistry procedure) the MCM is not restricted to a particular approximate scattering model (the VHS model) - on the contrary, any more realistic scattering law (and hence more realistic viscosity law) can be used with MCM. MCM is generally as quick or slightly quicker than standard TCE in steady flow simulations. MCM has been tested in unsteady simulations, but not compared yet for computational efficiency with TCE, in that case. Because MCM can use any viscosity law, and virtually any chemical reaction scheme used in a continuum CFD code it is much better suited for use in hybrid DSMC/continuum solvers than the TCE method.
机译:宏观化学方法是DSMC的一种新方法,用于计算稀有流中的化学反应。 MCM使用DSMC计算中可用的所有信息来对化学反应进行建模。它从碰撞计算中解耦出反应事件(用一种代表不同物种的粒子替换代表一种物种的模拟器粒子)。反应速率是从理论平衡反应速率得出的,与电池中所有模拟器粒子的平均能量(温度)一致,并进行了调整,以考虑到实际发生的足够高的能量碰撞的实际数量,从而速度的非平衡分布。可以轻松模拟多种温度的反应速率( emph {e.g。} Park u27s模型,它解释了振动离解耦合)。与标准的总碰撞能量TCE方法(基于碰撞的化学程序)不同,MCM并不局限于特定的近似散射模型(VHS模型),相反,任何更现实的散射定律(以及更现实的粘度定律)都可以与MCM一起使用。在稳定流模拟中,MCM通常比标准TCE快或快一些。 MCM已在不稳定的模拟中进行了测试,但在这种情况下,尚未将其与TCE的计算效率进行比较。因为MCM可以使用任何粘度定律,并且在连续CFD代码中几乎可以使用任何化学反应方案,所以它比TCE方法更适合用于混合DSMC /连续求解器。

著录项

  • 作者

    Macrossan Michael N.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号