首页> 外文OA文献 >Modeling psychophysical data at the population-level: the generalized linear mixed model
【2h】

Modeling psychophysical data at the population-level: the generalized linear mixed model

机译:在人口一级对心理物理数据进行建模:广义线性混合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In psychophysics, researchers usually apply a two-level model for the analysis of the behavior of the single subject and the population. This classical model has two main disadvantages. First, the second level of the analysis discards information on trial repetitions and subject-specific variability. Second, the model does not easily allow assessing the goodness of fit. As an alternative to this classical approach, here we propose the Generalized Linear Mixed Model (GLMM). The GLMM separately estimates the variability of fixed and random effects, it has a higher statistical power, and it allows an easier assessment of the goodness of fit compared with the classical two-level model. GLMMs have been frequently used in many disciplines since the 1990s; however, they have been rarely applied in psychophysics. Furthermore, to our knowledge, the issue of estimating the point-of-subjective-equivalence (PSE) within the GLMM framework has never been addressed. Therefore the article has two purposes: It provides a brief introduction to the usage of the GLMM in psychophysics, and it evaluates two different methods to estimate the PSE and its variability within the GLMM framework. We compare the performance of the GLMM and the classical two-level model on published experimental data and simulated data. We report that the estimated values of the parameters were similar between the two models and Type I errors were below the confidence level in both models. However, the GLMM has a higher statistical power than the two-level model. Moreover, one can easily compare the fit of different GLMMs according to different criteria. In conclusion, we argue that the GLMM can be a useful method in psychophysics.
机译:在心理物理学中,研究人员通常采用两级模型来分析单个受试者和人群的行为。这种经典模型有两个主要缺点。首先,第二级分析放弃了有关试验重复和特定受试者变异性的信息。其次,该模型无法轻松地评估拟合优度。作为此经典方法的替代方法,我们在这里提出广义线性混合模型(GLMM)。 GLMM分别估计固定效应和随机效应的可变性,它具有较高的统计能力,并且与经典的两级模型相比,可以更轻松地评估拟合优度。自1990年代以来,GLMM已在许多学科中频繁使用。但是,它们很少在心理物理学中应用。此外,据我们所知,在GLMM框架内估计主观等效点(PSE)的问题从未得到解决。因此,本文有两个目的:简要介绍GLMM在心理物理学中的用法,并评估两种不同的方法来估计GLMM框架内的PSE及其可变性。我们在已发布的实验数据和模拟数据上比较了GLMM和经典两级模型的性能。我们报告说,两个模型之间参数的估计值相似,并且两个模型中的I型错误均低于置信度。但是,GLMM具有比两级模型更高的统计能力。而且,可以根据不同标准轻松比较不同GLMM的拟合度。总之,我们认为GLMM可以是心理物理学中的一种有用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号