首页> 外文OA文献 >Multilayer perceptron neural networks model for meteosat second generation SEVIRI daytime cloud masking
【2h】

Multilayer perceptron neural networks model for meteosat second generation SEVIRI daytime cloud masking

机译:Meeosat第二代SEVIRI白天云掩蔽的多层感知器神经网络模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm) with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.
机译:引入并评估了用于Meteosat第二代SEVIRI(旋转增强型可见光和红外成像仪)图像的多层感知器神经网络云掩模。该模型经过训练,可以根据MSG SEVIRI白天数据进行云检测。它由多层感知器和一个隐藏的乙状结肠层组成,并通过误差反向传播算法进行训练。该模型由六个带10个隐藏节点的MSG数据带(0.6、0.8、1.6、3.9、6.2和10.8μm)提供。多层感知器经过训练以映射两个用于对云和晴朗天空进行分类的预定义值时,其云检测精度为88.96%。使用在不同日期拍摄的60张MSG图像进一步评估了网络。该网络不仅检测到明亮的厚云,而且还检测到稀薄或不亮的云。分析表明在MSG SEVIRI图像中使用云检测的机器学习模型的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号