首页> 外文OA文献 >Performance and Security Trade-offs in High-Speed Networks. An investigation into the performance and security modelling and evaluation of high-speed networks based on the quantitative analysis and experimentation of queueing networks and generalised stochastic Petri nets.
【2h】

Performance and Security Trade-offs in High-Speed Networks. An investigation into the performance and security modelling and evaluation of high-speed networks based on the quantitative analysis and experimentation of queueing networks and generalised stochastic Petri nets.

机译:高速网络中的性能和安全性折衷。基于排队网络和广义随机Petri网的定量分析和实验,研究了高速网络的性能,安全性建模和评估。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most used security mechanisms in high-speed networks have been adopted without adequate quantification of their impact on performance degradation. Appropriate quantitative network models may be employed for the evaluation and prediction of ¿optimal¿ performance vs. security trade-offs. Several quantitative models introduced in the literature are based on queueing networks (QNs) and generalised stochastic Petri nets (GSPNs). However, these models do not take into consideration Performance Engineering Principles (PEPs) and the adverse impact of traffic burstiness and security protocols on performance.udThe contributions of this thesis are based on the development of an effective quantitative methodology for the analysis of arbitrary QN models and GSPNs through discrete-event simulation (DES) and extended applications into performance vs. security trade-offs involving infrastructure and infrastructure-less high-speed networks under bursty traffic conditions. Specifically, investigations are carried out focusing, for illustration purposes, on high-speed network routers subject to Access Control List (ACL) and also Robotic Ad Hoc Networks (RANETs) with Wired Equivalent Privacy (WEP) and Selective Security (SS) protocols, respectively. The Generalised Exponential (GE) distribution is used to model inter-arrival and service times at each node in order to capture the traffic burstiness of the network and predict pessimistic ¿upper bounds¿ of network performance.udIn the context of a router with ACL mechanism representing an infrastructure network node, performance degradation is caused due to high-speed incoming traffic in conjunction with ACL security computations making the router a bottleneck in the network. To quantify and predict the trade-off of this degradation, the proposed quantitative methodology employs a suitable QN model consisting of two queues connected in a tandem configuration. These queues have single or quad-core CPUs with multiple-classes and correspond to a security processing node and a transmission forwarding node. First-Come-First-Served (FCFS) and Head-of-the-Line (HoL) are the adopted service disciplines together with Complete Buffer Sharing (CBS) and Partial Buffer Sharing (PBS) buffer management schemes. The mean response time and packet loss probability at each queue are employed as typical performance metrics. Numerical experiments are carried out, based on DES, in order to establish a balanced trade-off between security and performance towards the design and development of efficient router architectures under bursty traffic conditions.udThe proposed methodology is also applied into the evaluation of performance vs. security trade-offs of robotic ad hoc networks (RANETs) with mobility subject to Wired Equivalent Privacy (WEP) and Selective Security (SS) protocols. WEP protocol is engaged to provide confidentiality and integrity to exchanged data amongst robotic nodes of a RANET and thus, to prevent data capturing by unauthorised users. WEP security mechanisms in RANETs, as infrastructure-less networks, are performed at each individual robotic node subject to traffic burstiness as well as nodal mobility. In this context, the proposed quantitative methodology is extended to incorporate an open QN model of a RANET with Gated queues (G-Queues), arbitrary topology and multiple classes of data packets with FCFS and HoL disciplines under bursty arrival traffic flows characterised by an Interrupted Compound Poisson Process (ICPP). SS is included in the Gated-QN (G-QN) model in order to establish an ¿optimal¿ performance vs. security trade-off. For this purpose, PEPs, such as the provision of multiple classes with HoL priorities and the availability of dual CPUs, are complemented by the inclusion of robot¿s mobility, enabling realistic decisions in mitigating the performance of mobile robotic nodes in the presence of security. The mean marginal end-to-end delay was adopted as the performance metric that gives indication on the security improvement.udThe proposed quantitative methodology is further enhanced by formulating an advanced hybrid framework for capturing ¿optimal¿ performance vs. security trade-offs for each node of a RANET by taking more explicitly into consideration security control and battery life. Specifically, each robotic node is represented by a hybrid Gated GSPN (G-GSPN) and a QN model. In this context, the G-GSPN incorporates bursty multiple class traffic flows, nodal mobility, security processing and control whilst the QN model has, generally, an arbitrary configuration with finite capacity channel queues reflecting ¿intra¿-robot (component-to-component) communication and ¿inter¿-robot transmissions. Two theoretical case studies from the literature are adapted to illustrate the utility of the QN towards modelling ¿intra¿ and ¿inter¿ robot communications. Extensions of the combined performance and security metrics (CPSMs) proposed in the literature are suggested to facilitate investigating and optimising RANET¿s performance vs. security trade-offs.udThis framework has a promising potential modelling more meaningfully and explicitly the behaviour of security processing and control mechanisms as well as capturing the robot¿s heterogeneity (in terms of the robot architecture and application/task context) in the near future (c.f. [1]. Moreover, this framework should enable testing robot¿s configurations during design and development stages of RANETs as well as modifying and tuning existing configurations of RANETs towards enhanced ¿optimal¿ performance and security trade-offs.
机译:在高速网络中使用最广泛的安全机制时,并未充分量化它们对性能下降的影响。可以使用适当的定量网络模型来评估和预测“最佳”性能与安全性的权衡。文献中介绍的几种定量模型基于排队网络(QN)和广义随机Petri网(GSPN)。但是,这些模型没有考虑性能工程原理(PEP)以及流量突发性和安全协议对性能的不利影响。 ud本文的贡献基于对任意QN进行分析的有效量化方法的发展。通过离散事件仿真(DES)扩展模型和GSPN,并将应用程序扩展到性能和安全性之间的权衡,其中涉及流量突发情况下的基础架构和无基础架构的高速网络。具体而言,出于说明目的,针对受访问控制列表(ACL)约束的高速网络路由器以及具有有线对等保密性(WEP)和选择性安全性(SS)协议的机器人自组织网络(RANET)进行了调查,分别。通用指数(GE)分布用于对每个节点的到达时间和服务时间进行建模,以捕获网络的流量突发性并预测网络性能的悲观“上限”。 ud在具有ACL的路由器中代表基础设施网络节点的机制,性能下降是由于高速传入流量以及ACL安全性计算所致,使路由器成为网络的瓶颈。为了量化和预测这种退化的折衷,所提出的定量方法采用了一个合适的QN模型,该模型由串联配置的两个队列组成。这些队列具有具有多个类的单核或四核CPU,并且对应于安全处理节点和传输转发节点。优先采用先来先服务(FCFS)和线头(HoL)以及完全缓冲区共享(CBS)和部分缓冲区共享(PBS)缓冲区管理方案。每个队列的平均响应时间和丢包概率被用作典型的性能指标。基于DES进行了数值实验,目的是在突发流量条件下在安全和性能之间建立平衡的折衷方案,以设计和开发高效的路由器体系结构。 ud所提出的方法还用于评估性能与性能。具有移动性的机器人自组织网络(RANET)的安全性折衷受有线对等保密性(WEP)和选择性安全性(SS)协议的约束。 WEP协议旨在为RANET的机械手节点之间交换的数据提供机密性和完整性,从而防止未经授权的用户捕获数据。 RANET中的WEP安全机制是一种无基础设施的网络,它会在每个独立的机器人节点上执行流量突发性和节点移动性。在这种情况下,所提出的定量方法得以扩展,以结合具有闸门队列(G队列),任意拓扑和FCFS和HoL准则的突发性到达流量下以中断为特征的多类数据包的RANET开放QN模型复合泊松过程(ICPP)。在门控QN(G-QN)模型中包含SS,以建立“最佳”性能与安全性的权衡。为此,PEP(例如,提供具有HoL优先级的多个类别以及双CPU的可用性)通过包含机器人的移动性来进行补充,从而可以在存在安全性的情况下做出切实可行的决策来减轻移动机器人节点的性能。采用平均边际端到端延迟作为指示安全性改进的性能指标。 ud提议的定量方法通过制定高级混合框架来制定,以捕获“最佳”性能与安全性权衡,从而进一步增强安全性。通过更明确地考虑安全控制和电池寿命,可以对RANET的每个节点进行检查。具体来说,每个机器人节点都由混合门控GSPN(G-GSPN)和QN模型表示。在这种情况下,G-GSPN合并了突发的多类业务流,节点移动性,安全处理和控制,而QN模型通常具有,这是一种具有有限容量的通道队列的任意配置,可反映“内部”-机器人(组件到组件)通信和“内部”-机器人的传输。来自文献的两个理论案例研究适用于说明QN在建模“内部”和“内部”机器人通信中的效用。建议扩展文献中提出的组合性能和安全指标(CPSM),以促进调查和优化RANET的性能与安全权衡。 ud此框架具有更有意义和更明确的安全处理行为模型和控制机制,以及在不久的将来捕获机器人的异质性(根据机器人体系结构和应用程序/任务上下文)(参见[1])。此外,该框架还应能够在设计和开发过程中测试机器人的配置RANET的各个阶段,以及修改和调整RANET的现有配置,以增强“最佳”性能和安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号