首页> 外文OA文献 >An online one class support vector machine based person-specific fall detection system for monitoring an elderly individual in a room environment
【2h】

An online one class support vector machine based person-specific fall detection system for monitoring an elderly individual in a room environment

机译:基于在线一类支持向量机的人特定跌倒检测系统,用于监视房间环境中的老年人

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel computer vision based fall detection system for monitoring an elderly person in a home care, assistive living application. Initially, a single camera covering the full view of the room environment is used for the video recording of an elderly person’s daily activities for a certain time period. The recorded video is then manually segmented into short video clips containing normal postures, which are used to compose the normal dataset. We use the codebook background subtraction technique to extract the human body silhouettes from the video clips in the normal dataset and information from ellipse fitting and shape description, together with position information, is used to provide features to describe the extracted posture silhouettes. The features are collected and an online one class support vector machine (OCSVM) method is applied to find the region in feature space to distinguish normal daily postures and abnormal postures such as falls. The resultant OCSVM model can also be updated by using the online scheme to adapt to new emerging normal postures and certain rules are added to reduce false alarm rate and thereby improve fall detection performance. From the comprehensive experimental evaluations on data sets for 12 people, we confirm that our proposed personspecific fall detection system can achieve excellent fall detection performance with 100% fall detection rate and only 3% false detection rate with the optimally tuned parameters. This work is a semi-unsupervised fall detection system from a system perspective because although an unsupervised type algorithm (OCSVM) is applied, human interventionisneededforsegmentingandselectingofvideo clips containing normal postures. As such, our research represents a step towards a complete unsupervised fall detection system.
机译:在本文中,我们提出了一种新颖的基于计算机视觉的跌倒检测系统,用于监测家庭护理,辅助生活应用中的老年人。最初,一台摄像机可覆盖整个房间的整个视野​​,用于在一定时间段内记录老年人的日常活动。然后将录制的视频手动分割为包含正常姿势的短视频片段,这些短片段用于组成正常数据集。我们使用码本背景减法技术从正常数据集中的视频剪辑中提取人体轮廓,并从椭圆拟合和形状描述中获取信息,以及位置信息,以提供用于描述所提取姿势轮廓的特征。收集特征并使用在线一类支持向量机(OCSVM)方法在特征空间中找到该区域,以区分正常的日常姿势和异常的姿势(例如跌倒)。还可以通过使用在线方案来更新最终的OCSVM模型,以适应新出现的正常姿势,并添加某些规则以减少误报率,从而改善跌倒检测性能。通过对12个人的数据集进行全面的实验评估,我们确认,我们提出的特定于人体的跌倒检测系统可以以100%的跌倒检测率和仅3%的误码率(具有最佳调整参数)实现出色的跌倒检测性能。从系统的角度来看,这项工作是一个半无监督的跌倒检测系统,因为尽管应用了无监督类型算法(OCSVM),但对于包含正常姿势的视频片段进行细分和选择仍需要人工干预。因此,我们的研究代表了朝着完整的无监督跌倒检测系统迈出的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号