首页> 外文OA文献 >Applied sensor fault detection and identification during steady-state and transient system operation
【2h】

Applied sensor fault detection and identification during steady-state and transient system operation

机译:在稳态和瞬态系统运行期间应用传感器故障检测和识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents two readily implementable methods for sensor fault detection and identification (SFD/I) for complex systems. Specifically, principal component analysis (PCA) and self-organizing map neural network (SOMNN) based algorithms are demonstrated for use on industrial gas turbine (IGT) systems. Two operational regimes are considered viz. steady-state operation and operation during transient conditions. For steady-state operation, PCA based squared prediction error (SPE) is used for SFD, and through the use of contribution plots, SFI. For SFD/I under operational conditions with transients, a proposed ‘y-index’ is introduced based on PCA with transposed input matrix that provides information on anomalies in the sensor domain (rather than in the time domain as with the traditional PCA approach). Moreover, using a SOMNN approach, during steady-state operation the estimation error (EE) is used for SFD and EE contribution plots for SFI. Additionally, during transient operation, SOMNN classification maps (CMs) are used through comparisons with ‘fingerprints’ taken during normal operation. Validation of the approaches is demonstrated through experimental trial data taken during the commissioning of IGTs. Although the attributes of the techniques are focused on a particular industrial sector in this case, ultimately their use is expected to be much more widely applicable to other fields and systems.
机译:本文提出了两种易于实现的方法,用于复杂系统的传感器故障检测和识别(SFD / I)。具体来说,展示了基于主成分分析(PCA)和自组织映射神经网络(SOMNN)的算法,可用于工业燃气轮机(IGT)系统。认为有两种运作制度。稳态操作和瞬态条件下的操作。对于稳态操作,将基于PCA的平方预测误差(SPE)用于SFD,并通过使用贡献图SFI。对于处于瞬态操作条件下的SFD / I,基于具有转置输入矩阵的PCA引入了建议的“ y-index”,该矩阵提供有关传感器域(而不是像传统PCA方法一样的时域)异常的信息。此外,使用SOMNN方法,在稳态操作期间,估计误差(EE)用于SFI的SFD和EE贡献图。此外,在过渡运行期间,通过与正常运行期间获取的“指纹”进行比较,可以使用SOMNN分类图(CM)。这些方法的验证通过在IGT调试期间获得的实验性试验数据进行了证明。尽管在这种情况下,这些技术的属性集中在特定的工业领域,但最终,它们的使用有望更广泛地应用于其他领域和系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号