首页> 外文OA文献 >Shape based computer-aided detection of lung nodules in thoracic computed tomography images
【2h】

Shape based computer-aided detection of lung nodules in thoracic computed tomography images

机译:基于形状的胸部计算机断层扫描图像中肺结节的计算机辅助检测

摘要

In this paper, a new computer tomography (CT) lung nodule computer-aided detection (CAD) method is proposed for detecting both solid nodules and ground-glass opacity (GGO) nodules (part solid and nonsolid). This method consists of several steps. First, the lung region is segmented from the CT data using a fuzzy thresholding method.Then, the volumetric shape indexmap,which is based on local Gaussian and mean curvatures, and the “dot” map, which is based on the eigenvalues of a Hessian matrix, are calculated for each voxel within the lungs to enhance objects of a specific shape with high spherical elements (such as nodule objects).udThe combination of the shape index (local shape information)udand “dot” features (local intensity dispersion information)udprovides a good structure descriptor for the initial nodule candidates generation. Antigeometric diffusion, which diffuses across the image edges, is used as a preprocessing step. The smoothness of image edges enables the accurate calculation of voxel-based geometric features. Adaptive thresholding and modified expectation–maximization methods are employed to segment potential nodule objects. Rule-based filtering is first used to remove easily dismissible nonnodule objects. This is followed by a weighted supportudvector machine (SVM) classification to further reduce the number of false positive (FP) objects. The proposed method has been trained and validated on a clinical dataset of 108 thoracic CT scans using a wide range of tube dose levels that contain 220 nodules (185 solid nodules and 35 GGO nodules) determined by a ground truth reading process. The data were randomly split into training and testing datasets. The experimental results using the independent dataset indicate an average detection rate of 90.2%, with approximately 8.2 FP/scan. Some challenging nodules such as nonspherical nodules and low-contrast part-solid and nonsolid nodules were identified, while most tissues such as blood vessels were excluded. The method’s high detection rate, fast computation, and applicability to different imaging conditions and nodule types shows much promise for clinical applications.
机译:本文提出了一种新的计算机断层扫描(CT)肺结节计算机辅助检测(CAD)方法,用于同时检测实心结节和毛玻璃样不透明(GGO)结节(部分实心和非实心结节)。此方法包括几个步骤。首先,使用模糊阈值方法从CT数据中分割出肺区域。然后,基于局部高斯和平均曲率的体形指数图,以及基于Hessian特征值的“点”图为肺内的每个体素计算矩阵,以增强具有高球形元素的特定形状对象(例如结节对象)。 ud形状指数(局部形状信息) ud和“点”特征(局部强度分散)的组合信息)为初始结节候选生成提供了良好的结构描述符。跨图像边缘扩散的反几何扩散用作预处理步骤。图像边缘的平滑度可以精确计算基于体素的几何特征。自适应阈值和改进的期望最大化方法用于分割潜在的结节对象。首先使用基于规则的过滤来删除容易丢弃的非结节对象。接下来是加权支持向量机(SVM)分类,以进一步减少误报(FP)对象的数量。该方法已在108例胸部CT扫描的临床数据集上进行了训练和验证,使用的范围广泛的管剂量水平包含通过地面真相读取过程确定的220个结节(185个实体结节和35个GGO结节)。数据被随机分为训练和测试数据集。使用独立数据集的实验结果表明平均检测率为90.2%,每次扫描约8.2 FP。确定了一些具有挑战性的结节,例如非球形结节和低对比度的部分实心和非实心结节,而大多数组织(例如血管)被排除在外。该方法的高检测率,快速计算以及对不同成像条件和结节类型的适用性为临床应用带来了广阔前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号