首页> 外文OA文献 >Study of one class boundary method classifiers for application in a video-based fall detection system
【2h】

Study of one class boundary method classifiers for application in a video-based fall detection system

机译:一类边界方法分类器在基于视频的跌倒检测系统中的应用研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we introduce a video-based robust fall detection system for monitoring an elderly person in a smart room environment. Video features, namely the centroid and orientation of a voxel person, are extracted. The boundary method, which is an example one class classification technique, is then used to determine whether the incoming features lie in the ‘fall region’ of the feature space, and thereby effectively distinguishing a fall from other activities, such as walking, sitting, standing, crouching or lying. Four different types of boundary methods, k-center, k-th nearest neighbor, one class support vector machine and single class minimax probability machine are assessed on representative test datasets. The comparison is made on the following three aspects: 1). True positive rate, false positive rate and geometric means in detection 2). Robustness to noise in the training dataset 3). The computational time for the test phase. From the comparison results, we show that the single class minimax probability machine achieves the best overall performance. By applying one class classification techniques with 3-d features, we can obtain a more efficient fall detection system with acceptable performance, as shown in the experimental part; besides, it can avoid the drawbacks of other traditional fall detection methods.
机译:在本文中,我们介绍了一种基于视频的稳健跌倒检测系统,用于监视智能房间环境中的老年人。提取视频特征,即体素人的质心和方向。然后使用边界方法(一种一类分类技术)来确定传入的特征是否位于特征空间的“下降区域”中,从而有效地将下降与其他活动(例如步行,坐下,站立,蹲伏或说谎。在代表性测试数据集上评估了四种不同类型的边界方法:k中心,第k个最近邻,一类支持向量机和一类最小极大概率机。从以下三个方面进行比较:1)。检测中的真阳性率,假阳性率和几何平均值2)。训练数据集对噪声的鲁棒性3)。测试阶段的计算时间。从比较结果可以看出,单类最小极大概率机获得了最佳的整体性能。通过使用具有3-d特征的一类分类技术,我们可以获得性能更佳且性能可接受的跌倒检测系统,如实验部分所示;此外,它还可以避免其他传统跌倒检测方法的弊端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号