首页> 外文OA文献 >What has been missed for predicting human attention in viewing driving clips?
【2h】

What has been missed for predicting human attention in viewing driving clips?

机译:在预测驾驶夹中人的注意力时错过了什么?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent research progress on the topic of human visual attention allocation in scene perception and its simulation is based mainly on studies with static images. However, natural vision requires us to extract visual information that constantly changes due to egocentric movements or dynamics of the world. It is unclear to what extent spatio-temporal regularity, an inherent regularity in dynamic vision, affects human gaze distribution and saliency computation in visual attention models. In this free-viewing eye-tracking study we manipulated the spatio-temporal regularity of traffic videos by presenting them in normal video sequence, reversed video sequence, normal frame sequence, and randomised frame sequence. The recorded human gaze allocation was then used as the ‘ground truth’ to examine the predictive ability of a number of state-of-the-art visual attention models. The analysis revealed high inter-observer agreement across individual human observers, but all the tested attention models performed significantly worse than humans. The inferior predictability of the models was evident from indistinguishable gaze prediction irrespective of stimuli presentation sequence, and weak central fixation bias. Our findings suggest that a realistic visual attention model for the processing of dynamic scenes should incorporate human visual sensitivity with spatio-temporal regularity and central fixation bias.
机译:场景感知中人类视觉注意力分配的最新研究进展及其模拟主要基于静态图像的研究。但是,自然视觉要求我们提取由于自我中心运动或世界动态而不断变化的视觉信息。目前尚不清楚时空规律性(动态视觉中的固有规律性)在多大程度上影响视觉注意力模型中人的凝视分布和显着性计算。在这项自由观看的眼动追踪研究中,我们通过以常规视频序列,反向视频序列,常规帧序列和随机帧序列呈现交通视频,来操纵交通视频的时空规律。然后,将记录下来的人的视线分配用作“地面真理”,以检查许多最新的视觉注意力模型的预测能力。分析显示观察者之间的观察者之间的共识很高,但是所有测试的注意力模型的表现都明显差于人类。模型的可预测性差于注视预测,无论刺激的呈现顺序如何,以及弱的中央注视偏见,都可证明其模型的可预测性较差。我们的发现表明,用于处理动态场景的逼真的视觉注意模型应将人的视觉敏感性与时空规律性和中央注视力相结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号