首页> 外文OA文献 >A novel approach of mining write-prints for authorship attribution in e-mail forensics
【2h】

A novel approach of mining write-prints for authorship attribution in e-mail forensics

机译:一种在电子邮件取证中挖掘作者身份归属的书面印刷品的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is an alarming increase in the number of cyber-crime incidents through anonymous e-mails. The problem of email authorship attribution is to identify the most plausible author of an anonymous e-mail from a group of potential suspects. Most previous contributions employed a traditional classification approach, such as decision tree and Support Vector Machine (SVM), to identify the author and studied the effects of different writing style features on the classification accuracy. However, little attention has been given on ensuring the quality of the evidence. In this paper, we introduce an innovative data mining method to capture the writeprint of every suspect and model it as combinations of features that occurred frequently in the suspect’s emails. This notion is called frequent pattern, which has proven to be effective in many data mining applications, but it is the first time to be applied to the problem of authorship attribution. Unlike the traditional approach, the extracted write-print by our method is unique among the suspects and, therefore, provides convincing and credible evidence for presenting it in a court of law. Experiments on real-life e-mails suggest that the proposed method can effectively identify the author and the results are supported by a strong evidence.
机译:通过匿名电子邮件发送的网络犯罪事件数量惊人地增加。电子邮件作者身份归因的问题是从一组潜在的犯罪嫌疑人中找出匿名电子邮件的最合理的作者。以前的大多数贡献使用传统的分类方法(例如决策树和支持向量机(SVM))来识别作者,并研究了不同书写风格特征对分类准确性的影响。但是,在确保证据质量方面很少关注。在本文中,我们介绍了一种创新的数据挖掘方法,可捕获每个嫌疑人的笔迹并将其建模为可疑电子邮件中经常出现的功能的组合。这个概念称为“频繁模式”,它已被证明在许多数据挖掘应用程序中都是有效的,但这是第一次被应用于作者身份归属问题。与传统方法不同,通过我们的方法提取的书面记录在犯罪嫌疑人中是独一无二的,因此为将其提交法院提供了令人信服的可信证据。在现实生活中的电子邮件上的实验表明,该方法可以有效地识别作者,其结果得到了有力的证据支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号