首页> 外文OA文献 >Comparison of Deterministic and Stochastic Production Planning Approaches in Sawmills by Integrating Design of Experiments and Monte- Carlo simulation
【2h】

Comparison of Deterministic and Stochastic Production Planning Approaches in Sawmills by Integrating Design of Experiments and Monte- Carlo simulation

机译:通过整合实验设计和蒙特卡洛模拟,比较锯木厂确定性和随机生产计划方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

AbstractudForest industry is one of the key economic initiatives in Quebec (Canada). This industry has recently faced some obstacles, such as the scarcity of raw material, higher competitiveness in the market and new obligations applied in North America regarding sustainable development. These problems force lumber industries to improve their efficiency and become more service sensitive, in order to ensure the on time demand fulfillment. To achieve the goals aforesaid, one solution is to integrate the uncertainties more appropriately into production planning models. Traditional production planning approaches are based on deterministic models which in fact, ignore the uncertainties. A stochastic production planning approach is an alternative which models the uncertainties as different scenarios. Our goal is to compare the effectiveness of deterministic and stochastic approaches in sawing unit of sawmills on a rolling planning horizon. The comparison is performed under different circumstances in terms of length of planning horizon, re-planning frequency, and demand characteristics defined by its average and standard deviation. The design of experiments method is used as a basis for performing the comparison and the experiments are ran virtually through Monte-Carlo simulation. Several experiments are performed based on factorial design, and three types of robust parameter design (Taguchi, combined array, and a new protocol) which are integrated with stochastic simulation. Backorder and inventory costs are considered as key performance indicators. Finally a decision framework is presented, which guides managers to choose between deterministic and stochastic approaches under different combinations of length of planning horizon, re-planning frequency, and demand average and variation.ududKey words: sawmills, production planning, design of experiments, robust parameter design, uncertainty, Monte- Carlo simulationud
机译:森林产业是魁北克(加拿大)的主要经济举措之一。该行业最近面临一些障碍,例如原材料短缺,市场竞争力增强以及北美在可持续发展方面施加的新义务。这些问题迫使木材工业提高效率并变得对服务更加敏感,以确保按时满足需求。为了实现上述目标,一种解决方案是将不确定性更适当地整合到生产计划模型中。传统的生产计划方法基于确定性模型,而确定性模型实际上忽略了不确定性。随机生产计划方法是一种将不确定性建模为不同场景的替代方法。我们的目标是在滚动计划的地平线上比较确定性方法和随机方法在锯木厂锯切单元中的有效性。根据计划范围的长度,重新计划的频率以及由其平均值和标准偏差定义的需求特征,在不同情况下进行比较。实验方法的设计被用作进行比较的基础,并且实验实际上是通过蒙特卡洛模拟进行的。基于阶乘设计进行了一些实验,并将三种类型的鲁棒参数设计(田口,组合阵列和新协议)与随机仿真集成在一起。缺货和库存成本被视为关键绩效指标。最后提出了一个决策框架,该框架可指导管理者在计划范围的长度,重新计划的频率以及需求的平均值和变化的不同组合下,在确定性方法和随机方法之间进行选择。实验,鲁棒性参数设计,不确定性,蒙特卡洛模拟 ud

著录项

  • 作者

    vahidian naghmeh;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号