首页> 外文OA文献 >Evolution based statistical optimization technique to design the smart structural system for large aerospace structures
【2h】

Evolution based statistical optimization technique to design the smart structural system for large aerospace structures

机译:基于进化的统计优化技术,为大型航空航天结构设计智能结构系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A numerical approach for genetics based statistical optimization technique is used to design the smart structural system for aerospace structures. An evolutionary based optimization technique like genetic algorithm (GA) has come into prominence. The reason for developing evolution based algorithm for optimization is for its robustness and randomness. Other numerical tools that are used for optimization are generally gradient based algorithm, where there is possibility of occurrence for a local optimum value. The GA developed is a niche-micro GA, where termination criteria are set in order to restart the algorithm. Stage-wise multiple objective functions and multiple termination criteria are incorporated to improve the computational effort. The current approach is very much robust to design a smart structural system through optimization for its maximum structural performance. In order to achieve maximum structural performance for the smart structural system, it is necessary to appropriately position the active elements. Here the genetic algorithm is amalgamated with finite element to perform a statistical based optimization to locate the position and size of active structural elements i.e. actuators/sensors. Majorly, nowadays the actuators and sensors that are preferred for smart structures design (i.e. Piezo patches, Piezo composite, SMA wire, SMA composite etc) develop induced strain under an external applied field. It becomes necessary to optimize the smart structures using the following parameters such as static strains, modal dynamic strains, size of the actuators/sensors, induced strain etc. A scaled T-Tail model is taken as an illustration to carry out the GA analysis for the location and sizing of PZT actuator/sensor. The structural parameters such as static strains, modal dynamic strains and geometry details are taken from NASTRAN and then interfaced with MATLAB to perform the statistical optimization analysis.
机译:基于遗传学的统计优化技术的一种数值方法被用来设计用于航空航天结构的智能结构系统。像遗传算法(GA)这样的基于进化的优化技术已成为人们关注的焦点。开发基于进化的优化算法的原因是其鲁棒性和随机性。用于优化的其他数值工具通常是基于梯度的算法,其中可能会出现局部最优值。开发的GA是一款微型微型GA,其中设置了终止条件以重新启动算法。结合了阶段性的多个目标函数和多个终止标准以提高计算效率。通过优化智能结构系统以实现其最大结构性能,当前方法非常强大。为了实现智能结构系统的最大结构性能,必须适当地放置有源元件。在这里,遗传算法与有限元合并,以执行基于统计的优化,以定位活动结构要素(即执行器/传感器)的位置和大小。如今,主要是智能结构设计首选的致动器和传感器(即压电贴片,压电复合材料,SMA线材,SMA复合材料等)在外部应用领域会产生感应应变。有必要使用以下参数来优化智能结构,例如静态应变,模态动态应变,执行器/传感器的尺寸,感应应变等。以缩放的T-Tail模型为例进行GA分析PZT执行器/传感器的位置和尺寸。结构参数(例如静态应变,模态动态应变和几何细节)取自NASTRAN,然后与MATLAB进行接口以执行统计优化分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号