首页> 外文OA文献 >NiTi Super Elastic Shape Memory Alloys for Energy Dissipation in Smart Systems for Aerospace Applications
【2h】

NiTi Super Elastic Shape Memory Alloys for Energy Dissipation in Smart Systems for Aerospace Applications

机译:NiTi超弹性形状记忆合金,用于航空航天应用智能系统中的能量耗散

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shape Memory Alloys (SMAs) have attracted the attention of a wide range of researchers from several disciplines. This is because they possess very special and unusual properties and have potential for use in numerous applications. The nuances and subtleties associated with these unusual properties indeed pose challenges for the discerning researcher and designer. Even more exciting and demanding is to conceive, build and test a device exploiting the intrinsic property of these materials for aerospaceudapplications where the weight and volume budgets are most stringent. Such an effort would involve material characterization, arriving at the design envelope of the material and effectively integrating it into the device. The SMAs exhibit complex non-linear thermo–mechanical behavior. They exhibit hysteresis both in the thermal and stress loading domains. SMAs can undergo large pseudo elastic deformations (typically 4 – 6%) in the low temperature martensite phase at low stresses. These deformations are completely recovered on heating to the high temperature austenite phase. This effect which is thermally induced is known as the thermal Shape Memory Effect. There is also a large pseudo elastic deformation which results from the application of stress in SMAs.udThis is obtained by stressing the SMA (loading) in the austenite phase and inducing stress induced martensite (SIM). During the process of inducing the SIM, pseudo elastic deformations of the order of 6 – 8% accrue. These ‘large pseudo elastic’ deformations are completely recovered when the stress is removed from the material. The removal of stress (unloading) takes the material back to the austenite phase. The path taken during unloading is different from the path taken during loading resulting in a stress hysteresis.udAssociated with the stress hysteresis is the dissipation of energy in these materials which is several orders higher compared to conventional materials such as steels,udaluminium or other metal systems. The objective here is to develop an alternate method to build an efficient smart landing gear device with superior energy dissipating features exploiting the large energy dissipating characteristics of Super Elastic (SE) SMAsudapplicable to a wide variety of vehicles. It is pertinent here to mention that polymeric carbon composites are gaining increased acceptance for airframes and other structural subsystems due to their superior stiffness and strength properties. The focus of this study is to systematically investigate the energy dissipation capability of NiTi SMA Systems and effectively blend them with carbon composites to realize efficient landingudgear systems. The heat treatment given to the SE SMA materials hold the key to the control of their mechanical properties. Like other smart materials SE SMAs possess bifunctional properties. Associated with the energy dissipation characteristics is the sensory function of SE SMA. The study covers the effect of heat treatment on theudenergy dissipation characteristics, evaluation of the sensory behavior, effects of strain rate on energy dissipation and other related mechanical properties. It also details the design, fabrication, analysis and testing aspects associated with integrating the NiTi SMA with the polymeric carbon composite based smart landing gear system that is applicable to a large category of ground and air vehicles.
机译:形状记忆合金(SMA)吸引了来自多个学科的众多研究人员的关注。这是因为它们具有非常特殊的特性,并具有在众多应用中使用的潜力。与这些不寻常的属性相关的细微差别确实为挑剔的研究人员和设计师带来了挑战。对于重量和体积预算最为严格的航空航天应用,利用这些材料的固有特性来构思,构建和测试一种设备,将是更加令人兴奋和要求更高的。这样的工作将涉及材料表征,达到材料的设计范围并有效地将其集成到设备中。 SMA表现出复杂的非线性热机械行为。它们在热和应力加载域中都显示出磁滞现象。 SMA在低应力的低温马氏体相中会经历较大的伪弹性变形(通常为4 – 6%)。在加热至高温奥氏体相时,这些变形得以完全恢复。热诱导的这种效应称为热形状记忆效应。在SMA中施加应力还会导致较大的伪弹性变形。 ud这是通过在奥氏体相中对SMA(加载)施加应力并诱导应力诱发马氏体(SIM)来获得的。在诱导SIM的过程中,会产生6 – 8%数量级的伪弹性变形。当从材料中去除应力时,这些“大的伪弹性”变形将完全恢复。消除应力(卸载)可使材料返回奥氏体相。在卸载过程中所采取的路径与在加载过程中所采取的路径不同,从而导致应力滞后。 ud与应力滞后相关的是,这些材料中的能量耗散比常规材料(例如钢, uuda铝或其他材料)高出几个数量级。金属系统。此处的目的是开发一种替代方法,以利用具有超凡能量消耗特性的高效智能起落架装置,利用超级弹性(SE)SMA的大能量消耗特性(不适用于多种车辆)。此处应提及的是,由于其优异的刚度和强度特性,聚合物碳复合材料正越来越受到飞机机身和其他结构子系统的接受。这项研究的重点是系统地研究NiTi SMA系统的能量消散能力,并将其与碳复合材料有效地混合,以实现高效的降落/轨道系统。 SE SMA材料的热处理是控制其机械性能的关键。像其他智能材料一样,SE SMA具有双功能特性。 SE SMA的感觉功能与能量耗散特性相关。该研究涵盖了热处理对能量消散特性的影响,对感官行为的评估,应变率对能量消散的影响以及其他相关的机械性能。它还详细介绍了将NiTi SMA与基于聚合物碳纤维复合材料的智能起落架系统集成在一起的设计,制造,分析和测试方面,该系统适用于各种地面和空中车辆。

著录项

  • 作者

    Dayananda GN;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号