首页> 外文OA文献 >Robust image segmentation applied to magnetic resonance and ultrasound images of the prostate
【2h】

Robust image segmentation applied to magnetic resonance and ultrasound images of the prostate

机译:鲁棒的图像分割应用于前列腺的磁共振和超声图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop computationally efficient prostate segmentation algorithms in both TRUS and MRI image modalities. In this thesis we propose a probabilistic learning approach to achieve a soft classification of the prostate for automatic initialization and evolution of a deformable model for prostate segmentation. Two deformable models are developed for the TRUS segmentation. An explicit shape and region prior based deformable model and an implicit deformable model guided by an energy minimization framework. Besides, in MRI, the posterior probabilities are fused with the soft segmentation coming from an atlas segmentation and a graph cut based energy minimization achieves the final segmentation. In both image modalities, statistically significant improvement are achieved compared to current works in the literature.
机译:经直肠超声(TRUS)和磁共振图像(MRI)中的前列腺分割有助于体积估计,多模式图像配准,手术刨削和图像引导的前列腺活检。本文的目的是开发在TRUS和MRI图像模态中都具有计算效率的前列腺分割算法。在这篇论文中,我们提出了一种概率学习方法来实现对前列腺的软分类,以自动初始化和发展用于前列腺分割的可变形模型。针对TRUS分割开发了两个可变形模型。在能量最小化框架的指导下,基于显式形状和区域先验的可变形模型和隐式可变形模型。此外,在MRI中,后验概率与来自图集分割的软分割融合在一起,并且基于图割的能量最小化实现了最终分割。与文献中的当前著作相比,在两种图像模态中均实现了统计学上的显着改善。

著录项

  • 作者

    Ghose Soumya;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号