首页> 外文OA文献 >An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production
【2h】

An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production

机译:设计用于生产太阳能氨的固相金属氮化物反应物的离子化原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ammonia is an important fertilizer component and could be used as a convenient hydrogen carrier. This work studies a solar thermochemical reaction cycle that separates the reductive N[subscript 2] cleavage from the hydrogenation of nitrogen ions to NH[subscript 3] without using electricity or fossil fuel. The hydrolysis of binary metal nitrides of magnesium, aluminum, calcium, chromium, manganese, zinc, or molybdenum at 0.1 MPa and 200-1000°C recovered up to 100 mol% of the lattice nitrogen with up to 69.9 mol% as NH[subscript 3] liberated at rates of up to 1.45 x 10ˉ³ mol NH[subscript 3] (mol metal)ˉ¹ sˉ¹ for ionic nitrides. These rates and recoveries are encouraging when extrapolated to a full scale process. However, nitrides with lower ionicity are attractive due to simplified reduction conditions to recycle the oxidized reactant after NH[subscript 3] formation. For these materials diffusion in the solid limits the rate of NH3 liberation. The nitride ionicity (9.96-68.83% relative to an ideal ionic solid) was found to correlate with the diffusion constants (6.56 x 10[superscript -14] to 4.05 x 10[superscript -7] cm² sˉ¹) suggesting that the reduction of H[subscript 2]O over nitrides yielding NH[subscript 3] is governed by the activity of the lattice nitrogen or ion vacancies, respectively. The ionicity appears to be a useful rationale when developing an atomic-scale understanding of the solid-state reaction mechanism and when designing prospectively optimized ternary nitrides for producing NH[subscript 3] more sustainably and at mild conditions compared to the Haber Bosch process.
机译:氨是重要的肥料成分,可以用作方便的氢载体。这项工作研究了太阳热化学反应循环,该循环将还原性N [下标2]裂解与氮离子氢化成NH [下标3]分离,而无需使用电力或化石燃料。镁,铝,钙,铬,锰,锌或钼的二元金属氮化物在0.1 MPa和200-1000°C的温度下水解可回收高达100 mol%的晶格氮和高达69.9 mol%的NH [下标3]以最高1.45 x 10 -3 mol NH [下标3](mol金属)-1 s -1的速率释放。当推断到全面流程时,这些比率和回收率是令人鼓舞的。然而,由于简化了还原条件以使形成NH [下标3]后的氧化反应物再循环,具有较低离子性的氮化物具有吸引力。对于这些材料,固体中的扩散限制了NH3的释放速率。发现氮化物的离子性(相对于理想的离子固体为9.96-68.83%)与扩散常数(6.56 x 10 [上标-14]至4.05 x 10 [上标-7]cm²sˉ¹)相关,表明H的减少氮化物上的[下标2] O产生NH [下标3]分别由晶格氮或离子空位的活性决定。与哈伯·博世(Haber Bosch)工艺相比,当发展出对固态反应机理的原子级认识时,以及当设计预期优化的三元氮化物以更可持续地在温和条件下生产NH [下标3]时,离子性似乎是有用的原理。

著录项

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号