首页> 外文OA文献 >Hypergraph Index: An Index for Context-aware Nearest Neighbor Query on Social Networks
【2h】

Hypergraph Index: An Index for Context-aware Nearest Neighbor Query on Social Networks

机译:超图索引:社交网络上上下文感知的最近邻居查询的索引

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Social network has been touted as the No. 2 innovation in a recent IEEE Spectrum Special Report on “Top 11 Technologies of the Decade”, and it has cemented its status as a bona fide Internet phenomenon. With more and more people starting using social networks to share ideas, activities, events, and interests with other members within the network, social networks contain a huge amount of content. However, it might not be easy to navigate social networks to find specific information. In this paper, we define a new type of queries, namely context-aware nearest neighbor (CANN) search over social network to retrieve the nearest node to the query node that matches the textual context specified. The textual context of a node is defined as a set of keywords that describe the important aspects of the nodes. CANN considers both the network structure and the textual context of the nodes, and it has a very broad application base. Two existing searching strategies can be applied to support CANN search. The first one performs the search based on the network distance, and the other one conducts the search based on the node context information. Each of these methods operates according to only one factor but ignores the other one. They can be very inefficient for large social networks, where one factor alone normally has a very limited pruning power. In this paper, we design a hypergraph based method to support efficient approximated CANN search via considering the network structure and nodes’ textual contexts simultaneously. Experimental results show that the hypergraph-based method provides approximated results efficiently with low preprocessing and storage costs, and is scalable to large social networks. The approximation quality of our method is demonstrated based on both theoretical proofs and experimental results.
机译:在最近的IEEE Spectrum特别报告中,“十年十大技术”中,社交网络被誉为第二大创新,并且巩固了其作为真正互联网现象的地位。随着越来越多的人开始使用社交网络与网络中的其他成员共享想法,活动,事件和兴趣,社交网络包含了大量内容。但是,导航社交网络以查找特定信息可能并不容易。在本文中,我们定义了一种新的查询类型,即通过社交网络进行上下文感知的最近邻居(CANN)搜索,以检索与指定文本上下文匹配的查询节点的最近节点。节点的文本上下文定义为一组描述节点重要方面的关键字。 CANN同时考虑了节点的网络结构和文本上下文,并且具有广泛的应用基础。可以应用两种现有的搜索策略来支持CANN搜索。第一个基于网络距离执行搜索,而另一个基于节点上下文信息进行搜索。这些方法中的每一种仅根据一个因素进行操作,而忽略另一个因素。对于大型社交网络而言,它们的效率可能非常低,其中仅一个因素通常具有非常有限的修剪能力。在本文中,我们设计了一种基于超图的方法,通过同时考虑网络结构和节点的文本上下文来支持有效的近似CANN搜索。实验结果表明,基于超图的方法可以以较低的预处理和存储成本有效地提供近似结果,并且可以扩展到大型社交网络。基于理论证明和实验结果,证明了我们方法的近似质量。

著录项

  • 作者

    WANG, Yazhe; ZHENG, Baihua;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号