首页> 外文OA文献 >Superelasticity in bcc Nanowires by a Reversible Twinning Mechanism
【2h】

Superelasticity in bcc Nanowires by a Reversible Twinning Mechanism

机译:可逆孪生机制在密件抄送纳米线中的超弹性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Superelasticity (SE) in bulk materials is known to originate from the structure-changing martensitic transition which provides a volumetric thermodynamic driving force for shape recovery. On the other hand, structure-invariant deformation processes, such as twinning and dislocation slip, which result in plastic deformation, cannot provide the driving force for shape recovery. We use molecular-dynamics simulations to show that some bcc metal nanowires exhibit SE by a “reversible” twinning mechanism, in contrast to the above conventional point of view. We show that this reversible twinning is driven by the surface energy change between the twinned and detwinned state. In view of similar recent findings in fcc nanowires, we suggest that SE is a general phenomenon in cubic nanowires and that the driving force for the shape recovery arises from minimizing the surface energy. Furthermore, we find that SE in bcc nanowires is unique in several respects: first, the ‹111› / {112} stacking fault generated by partial dislocation is always preferred over ‹111› / {110} and ‹111› /{123} full dislocation slip. The occurrence of ‹111› / {112} twin or full dislocation slip in bcc nanowires depends on the competition between the emission of subsequent partial dislocations in adjacent {112} planes and the emission of partial dislocations in the same plane. Second, compared to their fcc counterparts, bcc nanowires have a higher energy barrier for the nucleation of twins, but a lower energy barrier for twin migration. This results in certain unique characteristics of SE in bcc nanowires, such as low energy dissipation and low strain hardening. Third, certain refractory bcc nanowires, such as W and Mo, can show SE at very high temperatures, which are higher than almost all of the reported high-temperature shape memory alloys. Our work provides a deeper understanding of superelasticity in nanowires and refractory bcc nanowires are potential candidates for applications in nanoelectromechanical systems operating over a wide temperature range.
机译:已知散装材料中的超弹性(SE)源自结构变化的马氏体转变,该转变提供了体积热力学驱动力以恢复形状。另一方面,导致塑性变形的诸如孪生和位错滑移的结构不变的变形过程不能提供用于形状恢复的驱动力。与上述传统观点相反,我们使用分子动力学模拟表明某些bcc金属纳米线通过“可逆”孪生机制表现出SE。我们表明,这种可逆孪晶是由孪晶和脱晶状态之间的表面能变化驱动的。鉴于最近在fcc纳米线中的类似发现,我们建议SE是立方纳米线中的普遍现象,并且形状恢复的驱动力来自于最小化表面能。此外,我们发现密件抄送纳米线中的SE在几个方面是独特的:首先,总是由‹111› / {110}和‹111› / {123}优先偏爱由‹111› / {112}引起的堆垛层错完全脱位。 bcc纳米线中‹111› / {112}双或全位错滑移的发生取决于相邻{112}平面中后续部分位错的发射与同一平面中部分位错的发射之间的竞争。其次,与fcc同行相比,bcc纳米线对孪晶成核的能垒较高,而对孪晶迁移的能垒较低。这导致bcc纳米线中SE的某些独特特征,例如低能量耗散和低应变硬化。第三,某些难熔的bcc纳米线,例如W和Mo,可以在非常高的温度下显示SE,该温度高于几乎所有报道的高温形状记忆合金。我们的工作使人们对纳米线中的超弹性有了更深入的了解,难熔的密件抄送纳米线是在宽温度范围内运行的纳米机电系统中应用的潜在候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号