首页> 外文OA文献 >Effect of different detrending approaches on computational intelligence models of time series
【2h】

Effect of different detrending approaches on computational intelligence models of time series

机译:不同去趋势方法对时间序列计算智能模型的影响

摘要

This paper analyzes the impact of different detrending approaches on the performance of a variety of computational intelligence (CI) models. Three approaches are compared: Linear, nonlinear detrending (based on empirical mode decomposition) and first-differencing. Five representative CI methods are evaluated: Dynamic evolving neural-fuzzy inference system (DENFIS), Gaussian process (GP), multilayer perceptron (MLP), optimally-pruned extreme learning machine (OP-ELM) and Support Vector Machines (SVM). Four major conclusions are drawn from experiments performed on six time series benchmarks: 1) qualitatively, the effect of detrending is remarkably uniform for all the CI methods considered, 2) extraction of the overall trend does not improve performance in general 3) the EMD-based method provides better performance than linear detrending (while the difference is negligible in most cases, it is noticeable in some cases), and 4) first-differencing, while effective in some cases, can be counterproductive for series showing common patterns.
机译:本文分析了不同趋势消除方法对各种计算智能(CI)模型性能的影响。比较了三种方法:线性,非线性去趋势(基于经验模式分解)和一阶微分。评估了五种代表性CI方法:动态演化神经模糊推理系统(DENFIS),高斯过程(GP),多层感知器(MLP),最佳修剪的极限学习机(OP-ELM)和支持向量机(SVM)。从在六个时间序列基准上进行的实验得出了四个主要结论:1)从质量上讲,去趋势的影响对于所有考虑的CI方法都非常均匀,2)总体趋势的提取通常不会改善性能3)EMD-基于线性的方法比线性去趋势提供更好的性能(尽管在大多数情况下差异可以忽略不计,在某些情况下这种差异是显而易见的),并且4)一阶微分虽然在某些情况下有效,但对于显示常见模式的序列可能适得其反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号