首页> 外文OA文献 >Thermally-induced softening of PNIPAm-based nanopillar arrays
【2h】

Thermally-induced softening of PNIPAm-based nanopillar arrays

机译:基于PNIPAm的纳米柱阵列的热诱导软化

摘要

The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modified by introducing a hydrophilic monomer to create a wide range of thermo-responsive micro-/nano-structures in a large temperature range. Using surface initiation atom-transfer radical polymerization in synthesized anodized aluminum oxide templates, we designed, fabricated, and characterized thermo-responsive nanopillars based on PNIPAm hydrogels with tunable mechanical properties by incorporating acrylamide monomers (AAm). In addition to their LCST, the incorporation of a hydrophilic entity in the nanopillars based on PNIPAm has abruptly changed the topological and mechanical properties of our system. To gain an insight into the mechanical properties of the nanostructure, its hydrophilic/hydrophobic behavior and topological characteristics, atomic force microscopy, molecular dynamics simulations and water contact angle studies were combined. When changing the nanopillar composition, a significant and opposite variation was observed in their mechanical properties. As temperature increased above the LCST, the stiffness of PNIPAm nanopillars, as expected, did so too, in contrast to the stiffness of PNIPAm-AAm nanopillars that decreased significantly. The molecular dynamics simulations proposed a local molecular rearrangement in our nanosystems at the LCST. The local aggregation of NIPAm segments near the center of the nanopillars displaced the hydrophilic AAm units towards the surface of the structure leading to contact with the aqueous environment. This behavior was confirmed via contact angle measurements below and above the LCST.
机译:软纳米结构水凝胶的表面性质在响应材料的设计中至关重要,该材料可用作创建自适应设备的平台。诸如聚(N-异丙基丙烯酰胺)(PNIPAm)之类的热响应性水凝胶的较低临界溶液温度(LCST)可以通过引入亲水性单体来改性,从而在较大的范围内创建各种热响应性微/纳米结构温度范围。通过在合成的阳极氧化铝模板中使用表面引发原子转移自由基聚合,我们设计,制造和表征了基于PNIPAm水凝胶的热响应纳米柱,并通过掺入丙烯酰胺单体(AAm)调节了机械性能。除了它们的LCST外,在基于PNIPAm的纳米柱中加入亲水性实体还突然改变了我们系统的拓扑和机械特性。为了深入了解纳米结构的机械性能,其亲水/疏水行为和拓扑特性,原子力显微镜,分子动力学模拟和水接触角研究,将其结合在一起。当改变纳米柱的组成时,观察到它们的机械性能有显着相反的变化。当温度升高到LCST以上时,PNIPAm纳米柱的刚度也如预期的那样增加,而PNIPAm-AAm纳米柱的刚度却明显下降。分子动力学模拟在LCST的纳米系统中提出了局部分子重排。 NIPAm片段在纳米柱中心附近的局部聚集使亲水AAm单元向结构表面移位,从而导致与水性环境接触。通过LCST下方和上方的接触角测量可以确认此行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号