首页> 外文OA文献 >Combining camera-trapping and noninvasive genetic data in a spatial capture–recapture framework improves density estimates for the jaguar
【2h】

Combining camera-trapping and noninvasive genetic data in a spatial capture–recapture framework improves density estimates for the jaguar

机译:在空间捕获-捕获框架中结合摄像头捕获和非侵入性遗传数据,可以提高美洲虎的密度估计

摘要

Abundance and density are key pieces of information for questions related to ecology and conservation. These quantities, however, are difficult to obtain for rare and elusive species, where even intensive sampling effort can yield sparse data. Here, we combine data from camera-trapping and noninvasive genetic sampling (scat surveys) of a jaguar population in the Caatinga of northeastern Brazil, where the species is threatened and little studied. We analyze data of both survey types separately and jointly in the framework of spatial capture–recapture. Density estimates were 1.45 (±0.46) for the camera-trap data alone, 2.03 (±0.77) for the genetic data alone, and 1.57 (±0.43) and 2.45 (±0.70) for the two methods, respectively, in the joint analysis. Density and other parameters were estimated more precisely in the joint model. Particularly the differences in movement between males and females were estimated much more precisely when combining both data sources, especially compared to the genetic data set alone. When compared to a previous non-spatial capture–recapture approach, present density estimates were more precise, demonstrating the superior statistical performance of spatial over non-spatial capture recapture models. The ability to combine different surveys into a single analysis with shared parameter allows for more precise population estimates, while at the same time enabling researchers to employ complementary survey techniques in the study of little known species
机译:丰度和密度是与生态和保护有关的问题的关键信息。但是,对于稀有和难以捉摸的物种而言,很难获得这些数量,在这些物种中,即使进行大量采样也会产生稀疏数据。在这里,我们结合了来自巴西东北部Caatinga美洲虎种群的相机诱捕和非侵入式遗传采样(粪便调查)数据,该物种受到威胁且研究很少。我们在空间捕获-捕获的框架中分别或联合分析两种调查类型的数据。在联合分析中,仅相机陷阱数据的密度估计值为1.45(±0.46),仅遗传数据的密度估计值为2.03(±0.77),两种方法的密度估计分别为1.57(±0.43)和2.45(±0.70)。 。在联合模型中可以更精确地估算密度和其他参数。特别是在结合两个数据源时,尤其是与单独的遗传数据集相比,男性和女性之间的运动差异估计得更为精确。与以前的非空间捕获-捕获方法相比,当前的密度估计更加精确,这表明空间统计模型优于非空间捕获-捕获模型。将不同的调查合并到具有共享参数的单个分析中的能力可以进行更精确的种群估计,同时使研究人员能够在未知物种的研究中采用补充调查技术

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号