首页> 外文OA文献 >A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence
【2h】

A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

机译:非线性回归与人工神经网络方法对野燕麦(Avena fatua)田间出现建模的比较研究

摘要

Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the conventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems.
机译:非线性回归(NLR)技术被广泛用于使用S型函数将杂草场出现模式与土壤微气候指数相匹配。人工神经网络(ANN)为此类建模目的提供了有趣的替代特征。在目前的工作中,开发了基于单变量水热时间的Weibull模型和双变量(水时间和热时间)人工神经网络,使用来自世界各地的数据研究非水分限制条件下的野生燕麦出苗。结果表明,与NLR方法相比,神经网络的准确性更高,这是由于改进了作为独立解释变量的热时和水时的描述能力。就测试集的均方根误差而言,双变量ANN模型的性能优于传统的Weibull方法,高出70·8%。这些结果表明,所提出的建模方法在杂草管理决策支持系统设计中的潜在适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号