首页> 外文OA文献 >Presence analytics: density-based social clustering for mobile users
【2h】

Presence analytics: density-based social clustering for mobile users

机译:现场分析:面向移动用户的基于密度的社交集群

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We demonstrate how social density-based clustering of WLAN traces can be utilised to detect granular social groups of mobile users within a university campus. Furthermore, the ability to detect such social groups, which can be linked to the learning activities taking place at target locations, provides an invaluable opportunity to understand the presence and movement of people within such an environment. For example, the proposed density-based clustering procedure, which we call Social-DBSCAN, has real potential to support human mobility studies such as the optimisation of space usage strategies. It can automatically detect the academic term period, the classes, and the attendance data. From a large Eduroam log of an academic site, we chose as a proof concept, selected locations with known capacity for the evaluation of our proposed method, which we successfully utilise to detect the regular learning activities at those locations, and to provide accurate estimates about the attendance levels over the academic term period.
机译:我们演示了如何基于社交密度的WLAN跟踪群集可以用来检测大学校园内移动用户的细粒度社交群体。此外,能够与目标位置处发生的学习活动相关联的检测此类社会群体的能力,为了解此类环境中人们的存在和活动提供了宝贵的机会。例如,提出的基于密度的聚类程序(我们称为Social-DBSCAN)具有支持诸如空间使用策略优化之类的人类流动性研究的真正潜力。它可以自动检测学期,班级和出勤数据。从学术站点的大型Eduroam日志中,我们选择了具有已知能力的证据概念作为证明概念,以评估我们提出的方法,我们成功地利用了这些位置来检测这些位置的常规学习活动,并提供有关这些位置的准确估计学期的出勤率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号