首页> 外文OA文献 >Towards anomaly detection for increased security in multibiometric systems: spoofing-resistant 1-median fusion eliminating outliers
【2h】

Towards anomaly detection for increased security in multibiometric systems: spoofing-resistant 1-median fusion eliminating outliers

机译:在多生物系统中实现异常检测以提高安全性:防欺骗性的1中值融合消除了异常值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset.
机译:Multibiometrics旨在在存在欺骗尝试的情况下提高生物识别的安全性,但是却可以提供更大的攻击点可用性。事实证明,标准的融合规则对欺骗企图非常敏感,即使仅在一个假实例中也是如此。本文提出了一种新颖的抗欺骗融合方案,提出了在具有活泼信息的证据集合中检测和消除异常融合输入的方法。这种方法旨在通过对人类监视操作员检测许多决策支持系统中所检测到的异常的典型行为进行建模,从而使多生物学系统对呈现攻击更具抵抗力。它可以提高安全性,同时在最新的2013指纹活度检测竞赛(LivDet)数据集上保留标准融合方法的高精度水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号