首页> 外文OA文献 >Diagnosing atmospheric motion vector observation errors for an operational high resolution data assimilation system
【2h】

Diagnosing atmospheric motion vector observation errors for an operational high resolution data assimilation system

机译:诊断可操作的高分辨率数据同化系统的大气运动矢量观测误差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Atmospheric motion vectors (AMVs) are wind observations derived by tracking cloud or water vapour features in consecutive satellite images. These observations are incorporated into Numerical Weather Prediction (NWP) through data assimilation. In the assimilation algorithm, the weighting given to an observation is determined by the uncertainty associated with its measurement and representation. Previous studies assessing AMV uncertainty have used direct comparisons between AMVs with co-located radiosonde data and AMVs derived from Observing System Simulation Experiments (OSSEs). These have shown that AMV error is horizontally correlated with characteristic length scale up to 200 km. In this work, we take an alternative approach and estimate AMV error variance and horizontal error correlation using background and analysis residuals obtained from the Met Office limited area, 3 km horizontal grid length data assimilation system. The results show that the observation error variance profile ranges from 5.2 to 14.1 s m2s− 2, with the highest values occurring at high and medium heights. This is indicative that the maximum error variance occurs where wind speed and shear, in combination, are largest. With the exception of AMVs derived from the High Resolution Visible channel, the results show horizontal observation error correlations at all heights in the atmosphere, with correlation lengthscales ranging between 140 and 200 km. These horizontal lengthscales are significantly larger than current AMV observation thinning distances used in the Met Office high resolution assimilation.
机译:大气运动矢量(AMV)是通过跟踪连续卫星图像中的云或水汽特征而得出的风向观测结果。这些观测通过数据同化被纳入数值天气预报(NWP)中。在同化算法中,赋予观测值的权重由与其测量和表示相关的不确定性确定。先前评估AMV不确定性的研究已经使用了位于同一地点的探空仪数据的AMV与从观测系统模拟实验(OSSE)得出的AMV之间的直接比较。这些结果表明,AMV误差与特征长度尺度(最大200?km)水平相关。在这项工作中,我们采用另一种方法,并使用从Met Office有限区域,3千米的水平网格长度数据同化系统获得的背景和分析残差来估计AMV误差方差和水平误差相关性。结果表明,观测误差方差分布范围为5.2至14.1 s m2s− 2,最大值出现在中高处。这表明最大的误差方差出现在风速和剪切力最大的地方。除了来自高分辨率可见通道的AMV以外,结果显示了大气中所有高度的水平观测误差相关性,相关长度范围在140至200 km之间。这些水平长度尺度明显大于Met Office高分辨率同化中使用的当前AMV观测稀疏距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号