首页> 外文OA文献 >Reconstructing phylogenetic trees from clustering trees
【2h】

Reconstructing phylogenetic trees from clustering trees

机译:从聚类树重建系统发生树

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the context of phylogenetic tree reconstruction, divisive clustering methods can be used to infer phylogenetic trees in a top-down way. These methods have the important advantage of providing an explanation for the resulting topology, since the splits are described by polymorphic locations in the sequences. However, the quality of the resulting trees is rather variable. In this work, we argue that trees induced by top-down methods can be viewed not just as phylogenetic trees, but also as identifying constraints that the real phylogenetic tree must satisfy. We analyzed trees inferred by Clus-φ, a distance based method for phylogenetic tree reconstruction based on a conceptual clustering method that extends the well-known decision tree learning approach. Each split defines two subclusters, such that the total branch length of the tree is minimized. However, the split does not define how the subclusters have to be connected. We propose a post-processing method that processes the clustering tree bottom-up, at each split finding the internal branch that connects the two subclusters with a minimal number of mutations. To evaluate this method we used a number of synthetic datasets generated by an evolutionary process simulator. In general, the post-processed Clus-φ trees are more similar to the underlying target trees of the synthetic datasets than the original Clus-φ trees, which shows that the post-processing step yields a better approximation of the target tree. When we consider Neighbor Joining and Parsimony results in this comparative analysis, we observe that the post-processed Clus-φ trees tend to be better than the NJ trees and are comparable to the parsimony trees. The results show that trees resulting from top-down phylogenetic tree construction can be improved by post-processing them. This post-processing is based on the viewpoint that the methods do not necessarily return the correct tree, but return constraints that the correct tree must satisfy. These constraints allow to guide the search for the tree with a minimal number of mutations in a more exhaustive way than the greedy search performed by parsimony methods. In general, the quality of post-processed Clus-φ trees are comparable to that of parsimony trees.
机译:在系统树重建的背景下,分裂聚类方法可用于自上而下地推断系统树。这些方法的重要优点是可以提供对所得拓扑的解释,因为拆分是由序列中的多态性位置描述的。但是,生成的树的质量变化很大。在这项工作中,我们认为,由上而下的方法诱导的树木不仅可以看作是系统发育树,而且还可以看作确定真正的系统发育树必须满足的约束。我们分析了由Clus-φ推断的树木,Clus-φ是一种基于概念的聚类方法的基于距离的系统树重建方法,该方法扩展了著名的决策树学习方法。每个拆分都定义了两个子簇,从而使树的总分支长度最小化。但是,拆分未定义子群集的连接方式。我们提出了一种后处理方法,该方法从下往上处理聚类树,在每个拆分处找到连接两个子簇且具有最少突变数的内部分支。为了评估这种方法,我们使用了由进化过程模拟器生成的许多合成数据集。通常,后处理的Clus-φ树比原始Clus-φ树与合成数据集的基础目标树更相似,这表明后处理步骤可以更好地逼近目标树。当我们在此比较分析中考虑邻居加入和简约结果时,我们观察到后处理的Clus-φ树倾向于比NJ树更好,并且可以与简约树相媲美。结果表明,通过对树进行自上而下的系统发育树构建,可以对树进行后处理来改善它们。此后处理基于以下观点:方法不一定返回正确的树,而是返回正确的树必须满足的约束。与通过简约方法执行的贪婪搜索相比,这些约束允许以更详尽的方式引导具有最少数量的突变的树的搜索。通常,后处理的Clus-φ树的质量可与简约树的质量相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号