首页> 外文OA文献 >Design, Fabrication and Characterization of Tunnel Field Effect Transistors for Ultra-Low Power CMOS Applications
【2h】

Design, Fabrication and Characterization of Tunnel Field Effect Transistors for Ultra-Low Power CMOS Applications

机译:超低功耗CMOS应用的隧道场效应晶体管的设计,制造和表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicon CMOS has emerged over the last 25 years as the predominant technology of the microelectronics industry. The concept of device scaling has been consistently applied over many technology generations, resulting in consistent improvement in both device density and performance. In the last decade, the shrinking of the transistor dimensions led to short channel effects (SCEs) which decreases the device performance. As a consequence, additional improvements were needed to maintain the performance improvements such as the introduction of SiGe S/D stressors to increase the carrier mobility due to the strain in the channel, the implementation of high-K and metal gate to reduce the gate leakage and, finally, the introduction of a new 3D architecture, finFET, to further suppress the SCEs. On the other hand, no solutions exist for the scaling of the dissipated power of the transistor. In fact, the scaling of the supply voltage (Vdd) is limited by the kT/q limit of the subthreshold slope which represents a physical limit for conventional MOSFETs. As a consequence, a new operation principle is needed.In this context, the Tunnel FET (TFET) has been proposed as a potential candidate to replace the MOSFET because its carrier injection mechanism based on quantum mechanical tunneling of the electrons from valence band to the conduction band and it is not subjected to the kT/q limit. The basic embodiment of TFET is a gated p-i-n diode. This thesis addresses the design, fabrication and characterization of TFETs following a CMOS compatible processing flow. The main goal is to understand the features of band to band tunneling from an experimental point of view and identify the best processing conditions and the best architecture for TFETs. The analysis starts from silicon homojunction gated p-i-n diodes to heterojunction devices where the source is replaced with SiGe with different germanium concentrations. Two different architectures are studied: finFETs and vertical nanowires. The finFETs are used as a test vehicle to study Si TFETs since the finFET processing is already mature. On the other hand, the vertical architecture is used to implement hetero junction TFET. Finally, in view of the limitations for the basic TFET embodiments, a new architecture to boost the on current of TFETs is proposed and analyzed by TCAD simulations.
机译:在过去的25年中,硅CMOS已成为微电子行业的主要技术。设备缩放的概念已在许多技术世代中得到一致应用,从而不断提高了设备​​密度和性能。在过去的十年中,晶体管尺寸的缩小导致了短沟道效应(SCE),从而降低了器件性能。因此,需要进行其他改进以保持性能改善,例如由于沟道中的应变而引入SiGe S / D应力源以提高载流子迁移率,采用高K和金属栅极来减少栅极泄漏最后,引入新的3D架构finFET,以进一步抑制SCE。另一方面,不存在用于缩放晶体管的耗散功率的解决方案。实际上,电源电压(Vdd)的缩放比例受到亚阈值斜率的kT / q极限的限制,该极限表示传统MOSFET的物理极限。因此,需要一种新的工作原理。在这种情况下,隧道FET(TFET)已被提议替代MOSFET,因为它的载流子注入机制基于电子从价带到量子带的量子机械隧穿。导带,并且不受kT / q限制。 TFET的基本实施例是栅极p-i-n二极管。本论文针对遵循CMOS兼容工艺流程的TFET的设计,制造和表征。主要目的是从实验的角度了解带间隧穿的特性,并确定TFET的最佳处理条件和最佳架构。分析从硅同质结栅极p-i-n二极管到异质结器件开始,在异质结器件中,源被具有不同锗浓度的SiGe替代。研究了两种不同的架构:finFET和垂直纳米线。由于finFET工艺已经成熟,因此finFET被用作研究Si TFET的测试工具。另一方面,垂直架构用于实现异质结TFET。最后,鉴于基本TFET实施例的局限性,提出了一种提高TFET导通电流的新架构,并通过TCAD仿真进行了分析。

著录项

  • 作者

    Leonelli Daniele;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号