首页> 外文OA文献 >Design and Evaluation of Digital Signal Processing Algorithms for Acoustic Feedback and Echo Cancellation
【2h】

Design and Evaluation of Digital Signal Processing Algorithms for Acoustic Feedback and Echo Cancellation

机译:用于声反馈和回声消除的数字信号处理算法的设计和评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis deals with several open problems in acoustic echo cancellati on and acoustic feedback control. Our main goal has been to develop solu tions that provide a high performance and sound quality, and behave in a robust way in realistic conditions. This can be achieved by departing f rom the traditional ad-hoc methods, and instead deriving theoretically w ell-founded solutions, based on results from parameter estimation and sy stem identification. In the development of these solutions, the computat ional efficiency has permanently been taken into account as a design con straint, in that the complexity increase compared to the state-of-the-ar t solutions should not exceed 50 % of the original complexity. In the context of acoustic echo cancellation, we have investigated the p roblems of double-talk robustness, acoustic echo path undermodeling, and poor excitation. The two former problems have been tackled by including adaptive decorrelation filters in the adaptive filtering algorithm, wit h the aim of whitening the near-end signal component and the residual ec ho component resulting from undermodeling. These decorrelation filters c an be identified concurrently with the acoustic echo path by using the p rediction error method (PEM) for system identification. As a result, a 3 0-40 dB misadjustment improvement (in the double-talk case) and a 20-35 dB variance decrease (in the undermodeling case) have been obtained, at the cost of a complexity increase of 50 % compared to the normalize d least mean squares (NLMS) algorithm. The poor excitation problem has b een approached from a Bayesian minimum mean square error (MMSE) point of view. This approach has led to the use of a regularization matrix diffe rent from the traditional scaled identity matrix, which may incorporate prior knowledge on the acoustic echo path. It has moreover been shown th at the existing proportionate adaptation algorithms can be viewed as a s pecial case of the proposed approach to regularization. A misadjustment improvement up to 10 dB has been obtained with a regularized NLMS-type a lgorithm that requires only 25 % more computations than the origina l NLMS algorithm. Two approaches to acoustic feedback control have been considered in this thesis, namely notch-filter-based howling suppression (NHS) and adaptiv e feedback cancellation (AFC). In the context of NHS, we have developed a novel parametric frequency estimation method, which is characterized b y a computational complexity that is linear in the data record length. A lso, a new design procedure for biquadratic parametric equalizer filters is proposed, based on a technique known as pole-zero placement. In the context of AFC, the PEM-based AFC approach that was proposed earlier for hearing aid AFC has been generalized to room acoustic and audio applica tions. The PEM-based approach relies on the identification of a near-end signal model that can be used in the design of decorrelating prefilters . These prefilters are aimed at resolving the AFC closed-loop signal cor relation problem and hence providing an unbiased acoustic feedback path model. We have obtained a misadjustment improvement of 7 dB compared to the hearing aid PEM-based AFC algorithm and of 12 dB compared to the NLM S algorithm, at the cost of a 25-50 % complexity increase compared to NLMS. In a comparative evaluation with the state-of-the-art acoustic feedback control methods, the PEM-based AFC approach was shown to outper form the existing phase-modulating feedback control (PFC) and NHS method s, as well as the AFC methods that apply a decorrelation in the closed s ignal loop, in terms of the achievable maximum stable gain and sound qua lity, both for speech and audio signals.
机译:本文针对声学回声消除和声学反馈控制中的几个开放性问题。我们的主要目标是开发一种解决方案,该解决方案可提供高性能和高音质,并在现实条件下具有强大的性能。这可以通过脱离传统的即席方法,而基于参数估计和系统识别的结果,得出理论上很好的解决方案来实现。在开发这些解决方案时,始终将计算效率作为设计约束,因为与最新解决方案相比,复杂度的增加不应超过原始复杂度的50%。在声学回声消除的背景下,我们研究了双向通话鲁棒性,声学回声路径欠建模和不良激励的问题。通过将自适应去相关滤波器包括在自适应滤波算法中已解决了前两个问题,其目的是白化由于欠建模而导致的近端信号分量和残留抖动分量。通过使用预测误差方法(PEM)进行系统识别,可以将这些去相关滤波器与回声路径同时识别。结果,获得了3 0-40 dB的失调改善(在双向通话情况下)和20-35 dB的方差减小(在欠建模情况下),与之相比,复杂度增加了50%归一化最小均方(NLMS)算法。从贝叶斯最小均方误差(MMSE)的观点出发,已经接近了不良激励问题。这种方法导致使用了与传统可缩放恒等式矩阵不同的正则化矩阵,该正规化矩阵可以并入关于声学回声路径的先验知识。此外,已经表明,在现有的比例适应算法上,可以将其视为所提出的正则化方法的特殊情况。使用正则化的NLMS类型算法已获得高达10 dB的失调改善,该算法仅比原始NLMS算法多计算25%。本文考虑了两种声学反馈控制方法,即基于陷波滤波器的啸叫抑制(NHS)和自适应反馈消除(AFC)。在NHS的背景下,我们开发了一种新颖的参数频率估计方法,该方法的特征是计算复杂度在数据记录长度上呈线性。另外,基于称为零极点放置的技术,提出了用于双二次参量均衡器滤波器的新设计程序。在AFC的背景下,较早提出的用于助听器AFC的基于PEM的AFC方法已广泛应用于室内声学和音频应用。基于PEM的方法依赖于可用于去相关前置滤波器设计的近端信号模型的识别。这些预滤波器旨在解决AFC闭环信号相关性问题,从而提供无偏的声学反馈路径模型。与基于助听器PEM的AFC算法相比,我们获得了7 dB的失调改善,与NLM S算法相比,我们获得了12 dB的失调调整,与NLMS相比,其复杂度增加了25-50%。在与最新的声反馈控制方法进行的比较评估中,基于PEM的AFC方法显示出优于现有的相位调制反馈控制(PFC)和NHS方法以及AFC方法在语音信号和音频信号可实现的最大稳定增益和声音质量方面,它们在闭合的信号环路中应用了去相关。

著录项

  • 作者

    van Waterschoot Toon;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号