首页> 外文OA文献 >Detection of Olea europaea subsp. cupsidata and Juniperus procera in the dry Afromontane Forest of northern Ethiopia using subpixel analysis of Landsat imagery
【2h】

Detection of Olea europaea subsp. cupsidata and Juniperus procera in the dry Afromontane Forest of northern Ethiopia using subpixel analysis of Landsat imagery

机译:检测油橄榄亚种。利用Landsat影像的亚像素分析埃塞俄比亚北部干旱的Afromontane森林中的cupsidata和Juniperus procera;

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Comprehensive and less costly forest inventory approaches are required to monitorthe spatiotemporal dynamics of key species in forest ecosystems. Subpixel analysis using theearth resources data analysis system imagine subpixel classification procedure was tested toextract Olea europaea subsp. cuspidata and Juniperus procera canopies from Landsat 7enhanced thematic mapper plus imagery. Control points with various canopy area fractionsof the target species were collected to develop signatures for each of the species. With thesesignatures, the imagine subpixel classification procedure was run for each species independently.The subpixel process enabled the detection of O. europaea subsp. cuspidata and J. procera treesin pure and mixed pixels. Total of 100 pixels each were field verified for both species. An overallaccuracy of 85% was achieved for O. europaea subsp. cuspidata and 89% for J. procera. A highoverall accuracy level of detecting species at a natural forest was achieved, which encouragesusing the algorithm for future species monitoring activities. We recommend that the algorithmhas to be validated in similar environment to enrich the knowledge on its capability to ensure itswider usage.
机译:需要采用全面且成本较低的森林清查方法来监测森林生态系统中关键物种的时空动态。使用地球资源数据分析系统进行亚像素分析,设想通过测试亚像素分类程序来提取油橄榄亚种。 Landsat 7的cuspidata和Juniperus procera冠层增强了专题制图仪和图像。收集目标物种具有不同冠层面积分数的控制点,为每个物种建立特征。有了这些签名,就可以对每种物种独立运行想象的亚像素分类程序。纯像素和混合像素中的cuspidata和J. procera树。对于这两种物种,每个领域总共验证了100个像素。 O.europaea亚种的总体准确性达到了85%。 cuspidata和J. procera的89%。达到了在天然林中检测物种的较高总体准确度,这鼓励了将该算法用于将来的物种监测活动。我们建议该算法必须在类似的环境中进行验证,以丰富有关其功能的知识,以确保其更广泛的使用。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号