首页> 外文OA文献 >Application of evolutionary algorithms in detecting sms spam at access layer
【2h】

Application of evolutionary algorithms in detecting sms spam at access layer

机译:进化算法在接入层短信垃圾邮件检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, Short Message Service (SMS) has been widely exploited in arbitrary advertising campaigns and the propagation of scam. In this paper, we first analyze the role of SMS spam as an increasing threat to mobile and smart phone users. Afterward, we present a filtering method for controlling SMS spam on the access layer of mobile devices. We analyze the role of different evolutionary and non evolutionary classifiers for our spam filter by assimilating the byte-level features of SMS. We evaluated our framework on real-world benign and spam datasets collected from Grumbletext and the users in our social networking community. The results of carefully designed experiments demonstrated that the evolutionary classifiers, like the Structural Learning Algorithm in Vague Environment (SLAVE), could efficiently detect spam messages at the access layer of a mobile device. To the best of our knowledge, the current work is the first SMS spam filter based on evolutionary classifier that works on the access layer of a mobile device. The results of our experiments show that our framework, using evolutionary algorithms, achieves a detection accuracy of more than 93%, with false alarm rate of 0.13$% in classifying spam SMS. Moreover, the memory requirement for incorporating SMS features is relatively small, and it takes less than one second to classify a message as spam or benign.
机译:近年来,短消息服务(SMS)已在任意广告活动和欺诈传播中得到广泛利用。在本文中,我们首先分析SMS垃圾邮件对移动和智能电话用户的威胁日益增加的作用。之后,我们提出了一种用于在移动设备的访问层上控制SMS垃圾邮件的过滤方法。我们通过吸收SMS的字节级功能来分析垃圾邮件过滤器的不同进化和非进化分类器的作用。我们根据从Grumbletext和社交网络社区中的用户收集的真实良性和垃圾邮件数据集评估了我们的框架。精心设计的实验结果表明,进化分类器(如Vague环境中的结构学习算法(SLAVE))可以有效地检测移动设备访问层的垃圾邮件。据我们所知,当前的工作是第一个基于进化分类器的SMS垃圾邮件过滤器,该过滤器可在移动设备的访问层上工作。实验结果表明,该框架采用进化算法,对垃圾短信的分类识别率达到93%以上,误报率为0.13%。此外,用于合并SMS功能的内存需求相对较小,并且将邮件分类为垃圾邮件或良性邮件所需的时间不到一秒钟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号