首页> 外文OA文献 >Coördinatie van het uranylion in oplossing en ionische vloeistoffen : een combinatie van UV-Vis absorptie en EXAFS spectroscopie
【2h】

Coördinatie van het uranylion in oplossing en ionische vloeistoffen : een combinatie van UV-Vis absorptie en EXAFS spectroscopie

机译:溶液和离子液体中铀酰的配位:紫外-可见吸收和EXAFS光谱的结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The uranyl ion (UO22+) has been extensively studied for decades and nowadays it is still a hot topic in a number of contemporary issues like nuclear waste treatment and the Balkan syndrome. Therefore, besides our fundamental interest in this complex system, the aim of this study was to provide a convenient and straightforward approach to identify the structure of various uranyl complexes formed in solution. To achieve this goal, spectroscopic techniques like UV-Vis absorption spectroscopy, luminescence and excitation spectroscopy as well as magnetic circular dichroism (MCD) were used, thereby focusing on typical eye-catching features like intense peaks and vibrational fine structure. This vibrational fine structure in the spectra of uranyl compounds is affected by the symmetry of the first coordination sphere of UO22+. In this work, we obtained the optical spectra of a number of symmetry groups, i.e. D4h, D3h, D2h and D3 coordination symmetry, which can be used as fingerprints of a certain symmetry group.These spectroscopic data were complemented with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy on the LIII-edge of uranium. This modern experimental technique enables us to obtain structural information like bond distances, on solution species. Moreover, the equatorial bond distances can be related with the coordination number of the uranyl ion. For example, a U-Oeq bond distance between 2.34 Å and 2.42 Å is characteristic for a fivefold coordination of the uranyl unit. We have chosen some well-known systems like [UO2(H2O)5]2+ and [UO2Cl4]2- to get familiar with the curve fitting procedure of EXAFS data. Afterwards we applied the knowledge we had obtained from these simple compounds to more complicated systems like [UO2(NO3)3]- and UO2(NO3)2(TBP)2. These uranium LIII-edge EXAFS data have given additional evidence for the geometry of the complexes proposed by optical spectroscopic techniques. It is obvious that the unique combination of optical spectroscopic techniques, available fingerprint spectra and uranium LIII-edge EXAFS spectroscopy provides us with a valuable tool for determining the first coordination sphere of unknown uranyl complexes in solution. The most important conclusions of this work are summarized in the following paragraphs.The optical spectra of the solution species have been compared with the spectra measured on single crystals. There is a good agreement between the energy values of the different electronic transitions of the single crystals and those of the same species in solution. We have to remark, however, that the spectroscopic properties of a uranyl complex in solution differ from those of the same compound in the solid state. First, in solution the absorption and luminescence bands are much broader. Consequently, overlap between the several electronic and vibronic transitions in the uranyl spectrum is inevitable. Furthermore, the molecules are randomly oriented in solution, so any polarization can be observed, making the spectrum in solution more complicated to analyse.All electronic transitions in the spectrum of the uranyl ion (D∞h) are parity forbidden by the Laporte selection rule. Two intensity mechanisms are currently invoked: either the static ligand field or the coupling of vibrations of ungerade parity (vibronic coupling). The maximum coordination of the uranyl ion with chloride ions in non-aqueous solution is four. The UV-Vis absorption spectrum can be explained in the centrosymmetric D4h coordination symmetry. Thus, the spectrum is purely vibronic in nature. The UV-Vis absorption spectrum of the uranyl tetrachloro complex [UO2Cl4]2- is dominated by the vibronic coupling mechanism. Intensity is induced by coupling of the asymmetric stretching (νa, a2u) and the bending (νb, eu) vibrations of the uranyl ion itself and especially of one equatorial ligand vibration, i.e. ν10 (b1u). This U-Cl out-of-plane bending, transforming as the fxyz orbital, is coupled to the first electronic transition from Σg+ to Πg (from A1g to Eg) and to one component of the transition from Σg+ to Δg (from A1g to B2g). The fourfold coordination of the uranyl ion with chloride ions is also demonstrated by uranium LIII-edge EXAFS spectroscopy. The [UO2Cl4]2- polyhedron contains two axial oxygen atoms at 1.77 Å and four chloride ligands at 2.68 Å.The UV-Vis absorption spectra of complexes exhibiting a trigonal D3h coordination symmetry like [UO2(NO3)3]- and [UO2(CH3COO)3]-, both formed in organic solvents, are characterized by very sharp, intense peaks at the low energy side of the spectrum, i.e. between 21000 cm-1 and 24000 cm-1. The corresponding MCD signals are intense negative A-terms. The spectra of [UO2(NO3)3]- and [UO2(CH3COO)3]- are affected by the static ligand field. In D3h symmetry, the transition from Σg+ to Δg (from A’1 to E’) is electronically allowed along the x- and y-axis, thereby inducing intensity in the first region of the spectrum (21000 cm-1 - 24000 cm-1), which results in the typical sharp and intense peaks. Uranium LIII-edge EXAFS data have given evidence for the trigonal symmetry of [UO2(NO3)3]- and [UO2(CH3COO)3]- species in non-aqueous solution. The uranyl ion is surrounded by three bidentate nitrate groups at 2.48 Å in the equatorial plane in the uranyl trinitrato complex. Special features at larger distances, indicating the presence of distal oxygen atoms at 4.16 Å, are observed in the Fourier transform due to the linear arrangement within the nitrate groups. The uranium LIII-edge EXAFS spectrum of [UO2(CH3COO)3]- exhibits the same structural features as that of [UO2(NO3)3]- and can be explained in a similar way. The first coordination sphere of the uranyl ion in [UO2(CH3COO)3]- consists of three acetate ligands with the U-Oeq distance equal to 2.48 Å. The focusing effect is also important within the acetate groups, thereby identifying the distal carbon atoms at a distance of 4.37 Å.Whereas the UV-Vis absorption spectra of [UO2Cl4]2- and [UO2(NO3)3]- are dominated by the σu+δu configuration, the σu+φu configuration plays a dominant role in the spectrum of the inclusion complex [UO2(18-crown-6)]2+. At higher energies the transition from Σg+ to Γg (σu+φu) appears, which is typical for a D3 coordination symmetry. The identification of six equatorial oxygen atoms at 2.46 Å and twelve equatorial carbon atoms at 3.51 Å in the EXAFS spectrum and the corresponding Fourier transform indicates the inclusion of UO22+ in the crown ether cavity. The U-Oeq and U-Ceq bond distances cover a large range, which is reflected in the high Debye-Waller factors σ².The uranyl complexes mentioned above are obtained in non-aqueous solvents (acetonitrile, acetone). The stability constants of the different complexes in these solvents are not known, unlike those in aqueous solution. The ligand affinity towards the uranyl ion changes from non-aqueous solvents to aqueous solutions. Whereas [UO2Cl4]2- and [UO2(NO3)3]- are formed in acetonitrile and acetone, no significant complex formation occurs between the uranyl ion and chloride or nitrate ions in aqueous solution. This weak complex formation is confirmed by the absence of spectral changes in the UV-Vis absorption spectra with respect to the spectrum of the “free” uranyl ion, the observation of the typical features of [UO2(H2O)5]2+ in the EXAFS spectra and the species distribution calculations using the known stability constants.Ionic liquids are salts, composed of an organic cation and an organic/inorganic anion, with a melting point below 100 °C. Currently, studies are performed to replace the classical organic solvents by these ionic liquids in numerous fields of chemistry like separation processes, catalysis and organic synthesis. Due to the growing interest in ionic liquids, we have investigated the speciation of uranyl complexes in imidazolium-based and pyrrolidinium-based ionic liquids by means of spectroscopic techniques (UV-Vis absorption spectroscopy, luminescence and excitation spectroscopy, magnetic circular dichroism, uranium LIII-edge EXAFS spectroscopy). Thereby, the anionic component of the ionic liquids was varied. The comparison of the spectroscopic properties in ionic liquids with the fingerprint spectra in non-aqueous solvents unambiguously points to the formation of [UO2Cl4]2-, [UO2(NO3)3]- and [UO2(CH3COO)3]- species as well as to the presence of the inclusion complex [UO2(18-crown-6)]2+ in the ionic liquids [C4mim][Tf2N] and [bmpyr][Tf2N]. The cations and the anions of the ionic liquids seem to have no influence on the positions of the electronic transitions. Indeed, there is a good agreement with the corresponding UV-Vis data in non-aqueous solution. The presence of a [UO2(NO3)3]- species in [C4mim][Tf2N] is demonstrated by uranium LIII-edge EXAFS spectroscopy. The structural parameters of the [UO2(NO3)3]- coordination polyhedron in the ionic liquid are comparable with those in acetonitrile. Uranium LIII-edge EXAFS measurements on the other complexes studied in ionic liquids, will be performed in future.The presence of small inorganic ligands inhibits the formation of the inclusion complex [UO2(18-crown-6)]2+ in ionic liquids. This is consistent with the observations in acetonitrile and propylene carbonate. Once a trace of chloride or bromide ions is added to the ionic liquid, the crown ether is removed from the first coordination sphere, as established by UV-Vis absorption spectroscopy and crystal structure determinations.During the synthesis of imidazolium-based ionic liquids, one has to take care that all 1-methylimidazole has reacted. Otherwise, hydrolysis products of the uranyl ion are formed in the ionic liquids, giving a broad, structureless band in the UV-Vis absorption spectra. Furthermore, kinetic effects are involved in the sample preparation of uranyl-containing ionic liquids. It would be very interesting to study these kinetic effects in more detail in future, for example by means of UV-Vis absorption spectroscopy.Tri-n-butylphosphate (TBP) is a commonly used neutral extracting agent in liquid-liquid extraction processes for nuclear waste treatment. Knowledge of the geometry of the species involved in these extraction procedures can provide insight in the development of new, more selective extracting agents. Therefore, we have investigated the first coordination sphere of the uranyl ion in a tri-n-butylphosphate solution containing UO2(NO3)2∙6H2O. Both 31P NMR spectroscopy and UV-Vis absorption spectroscopy indicate the formation of the UO2(NO3)2(TBP)2 complex in solution. The vibrational fine structure in the spectrum can be attributed to a D2h coordination symmetry. Hence, the spectrum is purely vibronic in nature. In the MCD spectrum, only B-terms are observed, which is consistent with the removal of all degeneracy in D2h symmetry. Furthermore, we were able to calculate the equilibrium constant Keq and the thermodynamic parameters (DH, DS) of the complex formation reaction between UO2(NO3)2·6H2O and tri-n-butylphosphate, based on the 31P NMR data. Uranium LIII-edge EXAFS spectroscopy also reveals the coordination of two bidentate coordinated nitrate groups (U-Oeq = 2.52 Å) and two monodentate phosphate groups (U-Oeq = 2.37 Å). Complex multiple scattering features have to be included in the analysis of the spectra due to the linear arrangement within the nitrate groups and the tri-n-butylphosphate ligands. Investigation of the structure of UO2(NO3)2(TBP)2 in ionic liquids might contribute to the studies of the potential replacement of organic solvents in liquid-liquid extraction processes.The photochemistry of the actinide compounds is almost exclusively dominated by the uranyl ion. However, the mechanisms of most of these photochemical reactions are not known yet. An interesting topic is the structure of uranyl oxalato complexes involved in these photochemical reactions. We have presented a different perspective on the complex formation of the uranyl ion with oxalate ions. Based on spectroscopic measurements in acetone solution, we have proposed a dimeric species with a bridging oxalate group, where each uranyl unit is a pentagonal bipyramid. In addition, the UV-Vis absorption spectra, which exhibit an increase in intensity in the low energy part, are consistent with a dimeric structure with D2 coordination symmetry. Furthermore, we believe that the out-of-plane bending ν10 (a in D2) can induce an intramolecular twisting mechanism, thereby destroying the oxalate ligands. Hopefully our hypothesis will be confirmed in future by uranium LIII-edge EXAFS spectroscopy and theoretical calculations on dimeric structures. It has been emphasized in our studies that for a metal-to-ligand ratio of 1:2 or 1:3 a di- or tricomplex is not necessarily formed, which is often overlooked in the literature. Many mistakes are also made by assuming that the dissolution of a solid uranyl compound will give the same structure as the solid in solution. For example, the salt UO2(NO3)2∙6H2O dissolved in aqueous solution is fully dissociated, thereby forming the hydrated “free” uranyl ion.It is obvious that uranium LIII-edge EXAFS spectroscopy offers good prospects for future work concerning the coordination environment of the uranyl ion in solution as well as in ionic liquids. However, an important disadvantage is encountered using EXAFS spectroscopy. In case of a mixture of species, the EXAFS data will only give average coordination numbers and bond distances, which hampers the clarification of the structure of solution species. Therefore, we would suggest that the combination of UV-Vis absorption spectroscopy, luminescence spectroscopy, where possible magnetic circular dichroism, group theoretical analysis as well as uranium LIII-edge EXAFS spectroscopy, NMR spectroscopy, theoretical calculations and principal component analysis is an excellent tool for elucidating the geometry and the composition of the first coordination sphere of several unknown uranyl complexes. The determination of the structure of the intermediately formed chloro and nitrato complexes in non-aqueous solvents by a combination of the techniques mentioned above is a real challenge! But, at first, it would be very helpful to get insight in the structure of the solvated uranyl ion in anhydrous acetonitrile.
机译:铀酰离子(UO22 +)已被广泛研究了数十年,如今,它仍然是许多当代问题的热门话题,例如核废料处理和巴尔干综合症。因此,除了我们对这种复杂系统的基本兴趣外,本研究的目的是提供一种方便直接的方法来鉴定溶液中形成的各种铀酰复合物的结构。为了实现这一目标,使用了诸如紫外可见吸收光谱,发光和激发光谱以及磁圆二向色性(MCD)之类的光谱技术,从而着眼于典型的醒目特征,例如强峰和振动精细结构。铀酰化合物光谱中的这种振动精细结构受UO22 +第一配位球的对称性影响。在这项工作中,我们获得了多个对称组的光谱,即D4h,D3h,D2h和D3配位对称性,可以用作某个对称组的指纹。这些光谱数据得到了扩展X射线吸收的补充铀LIII边缘的精细结构(EXAFS)光谱。这项现代的实验技术使我们能够获得有关溶液物种的结构信息,例如键距。此外,赤道键距可以与铀酰离子的配位数相关。例如,铀酰单元的五重配位的特征是U-Oeq键距在2.34Å和2.42Å之间。我们选择了一些著名的系统,例如[UO2(H2O)5] 2+和[UO2Cl4] 2-,以熟悉EXAFS数据的曲线拟合过程。之后,我们将从这些简单化合物中获得的知识应用于更复杂的系统,例如[UO2(NO3)3]-和UO2(NO3)2(TBP)2。这些铀LIII边缘EXAFS数据为光学光谱技术提出的配合物的几何结构提供了额外的证据。显然,光谱技术,可用的指纹光谱和铀LIII-edge EXAFS光谱的独特结合为我们提供了确定溶液中未知铀酰复合物的第一个配位域的有价值的工具。下文总结了这项工作的最重要结论。将溶液种类的光谱与在单晶上测量的光谱进行了比较。在溶液中,单晶的不同电子跃迁的能量值与相同物种的电子跃迁的能量值之间存在良好的一致性。然而,我们必须指出,溶液中铀酰配合物的光谱性质不同于固态的相同化合物的光谱性质。首先,在溶液中吸收和发光带要宽得多。因此,在铀酰光谱中的几个电子和电子振动跃迁之间的重叠是不可避免的。此外,分子在溶液中是随机取向的,因此可以观察到任何极化,从而使溶液中的光谱更难以分析。根据Laporte选择规则,铀酰离子(D∞h)光谱中的所有电子跃迁均是奇偶性的。当前调用了两种强度机制:静态配体场或非普通奇偶校验振动的耦合(振动耦合)。在非水溶液中,铀酰离子与氯离子的最大配位为4。 UV-Vis吸收光谱可以解释为中心对称的D4h配位对称性。因此,该光谱本质上是纯振动的。铀酰四氯配合物[UO2Cl4] 2-的紫外-可见吸收光谱由振动耦合机理决定。强度是通过铀酰离子本身的不对称拉伸振动(νa,a2u)和弯曲振动(νb,eu)的耦合引起的,尤其是一种赤道配体振动即ν10(b1u)的耦合引起的。这种U-Cl平面外弯曲(作为fxyz轨道进行转换)耦合到从Σg+到Πg(从A1g到Eg)的第一个电子跃迁以及从Σg+到Δg的跃迁的一个分量(从A1g到B2g) )。铀LIII-edge EXAFS光谱也证明了铀酰离子与氯离子的四重配位。 [UO2Cl4] 2-多面体在1.77Å处包含两个轴向氧原子,在2.68Å处包含四个氯化物配体。络合物的UV-Vis吸收光谱表现出三角形的D3h配位对称性,如[UO2(NO3)3]-和[UO2(都是在有机溶剂中形成的CH3COO)3]-的特征是在光谱的低能侧,即21000 cm-1和24000 cm-1之间的峰非常尖锐,强烈。相应的MCD信号是强烈的负A项。 [UO2(NO3)3]-和[UO2(CH3COO)3]-的光谱受静态配体场的影响。在D3h对称性下,沿x轴和y轴电子允许从Σg+过渡到Δg(从A’1过渡到E’),从而在光谱的第一个区域(21000 cm-1-24000 cm-1)产生强度,从而导致典型的尖峰和强烈峰。铀LIII边缘EXAFS数据为[UO2(NO3)3]-和[UO2(CH3COO)3]-非水溶液中的三角对称性提供了证据。铀酰离子在三价铀酰三腈络合物的赤道平面中被2.48Å的三个硝酸二齿硝酸酯基团包围。由于硝酸盐基团内的线性排列,在傅立叶变换中观察到较大距离处的特殊特征,表明在4.16Å处存在远端氧原子。 [UO2(CH3COO)3]-的铀LIII边缘EXAFS光谱具有与[UO2(NO3)3]-相同的结构特征,可以用相似的方式进行解释。 [UO2(CH3COO)3]-中铀酰离子的第一个配位球由三个乙酸酯配体组成,U-Oeq距离等于2.48Å。聚焦作用在乙酸酯基团中也很重要,因此可以识别距离为4.37Å的远端碳原子。而[UO2Cl4] 2-和[UO2(NO3)3]-的UV-Vis吸收光谱主要由σu+δu构型,σu+φu构型在包合物[UO2(18-crown-6)] 2+的光谱中起主要作用。在较高的能量下,会出现从Σg+到Γg(σu+φu)的过渡,这对于D3配位对称性来说是典型的。在EXAFS光谱中鉴定出2.46Å处的六个赤道氧原子和3.51Å处的十二个赤道碳原子以及相应的傅里叶变换表明,冠状醚腔中包含UO22 +。 U-Oeq和U-Ceq的键距范围很大,这反映在较高的Debye-Waller因子σ²中。上述的铀酰配合物是在非水溶剂(乙腈,丙酮)中获得的。不同于水溶液中的那些,不同配合物在这些溶剂中的稳定常数是未知的。对铀酰离子的配体亲和力从非水性溶剂变为水溶液。尽管在乙腈和丙酮中形成了[UO2Cl4] 2-和[UO2(NO3)3]-,但在水溶液中,铀酰离子与氯离子或硝酸根离子之间没有明显的络合物形成。相对于“游离”铀酰离子的光谱,观察到[UO2(H2O)5] 2+的典型特征,UV-Vis吸收光谱中没有光谱变化证实了这种弱的复合物形成。 EXAFS光谱和使用已知稳定常数的物种分布计算离子液体是由有机阳离子和有机/无机阴离子组成的盐,熔点低于100°C。当前,在许多化学领域,例如分离过程,催化和有机合成中,进行了用这些离子液体代替经典有机溶剂的研究。由于对离子液体的兴趣不断增长,我们通过光谱技术(紫外可见吸收光谱,发光和激发光谱,磁性圆二色性,铀LIII)研究了咪唑基和吡咯烷鎓离子液体中铀酰配合物的形态。边缘EXAFS光谱)。由此,改变了离子液体的阴离子成分。离子液体在非水溶剂中的光谱性质与指纹图谱的比较也明确指出了[UO2Cl4] 2-,[UO2(NO3)3]-和[UO2(CH3COO)3]-物种的形成。离子液体[C4mim] [Tf2N]和[bmpyr] [Tf2N]中存在包合物[UO2(18-crown-6)] 2+的问题。离子液体的阳离子和阴离子似乎对电子跃迁的位置没有影响。的确,与非水溶液中的相应UV-Vis数据有很好的一致性。 [C4mim] [Tf2N]中存在[UO2(NO3)3]-物种,通过铀LIII-边缘EXAFS光谱学证实。离子液体中[UO2(NO3)3]-配位多面体的结构参数与乙腈中的结构参数相当。将来将对在离子液体中研究的其他配合物进行铀LIII边缘EXAFS测量。小的无机配体的存在会抑制离子液体中包合物[UO2(18-crown-6)] 2+的形成。这与在乙腈和碳酸亚丙酯中的观察结果一致。一旦将微量的氯离子或溴离子添加到离子液体中,就可以通过UV-Vis吸收光谱法和晶体结构确定的方法将冠醚从第一个配位球中除去。在合成咪唑基离子液体的过程中,必须注意所有的1-甲基咪唑都已反应。否则,在离子液体中会形成铀酰离子的水解产物,从而在UV-Vis吸收光谱中产生宽阔的无结构谱带。此外在含铀酰的离子液体的样品制备中涉及动力学效应。将来,例如通过紫外-可见吸收光谱法,对这些动力学效应进行更详细的研究将是非常有趣的。磷酸三正丁酯(TBP)是核燃料液-液萃取过程中常用的中性萃取剂废物处理。这些提取程序中涉及的物种的几何学知识可以为开发新的,更具选择性的提取剂提供见识。因此,我们研究了含UO2(NO3)2∙6H2O的磷酸三正丁酯溶液中铀酰离子的第一个配位域。 31P NMR光谱和UV-Vis吸收光谱均表明溶液中UO2(NO3)2(TBP)2络合物的形成。频谱中的振动精细结构可以归因于D2h配位对称性。因此,该光谱本质上是纯振动的。在MCD谱图中,仅观察到B项,这与消除D2h对称性中的所有简并性一致。此外,基于31P NMR数据,我们能够计算出UO2(NO3)2·6H2O与磷酸三正丁酯之间的络合物形成反应的平衡常数Keq和热力学参数(DH,DS)。铀LIII-edge EXAFS光谱还揭示了两个二齿配位的硝酸盐基团(U-Oeq = 2.52Å)和两个单齿配位的磷酸盐基团(U-Oeq = 2.37Å)的配位。由于硝酸根基团和磷酸三正丁酯配体内的线性排列,在光谱分析中必须包括复杂的多重散射特征。研究离子液体中UO2(NO3)2(TBP)2的结构可能有助于研究液-液萃取过程中有机溶剂的潜在替代作用。the系化合物的光化学几乎完全由铀酰离子控制。 。然而,大多数这些光化学反应的机理尚不清楚。一个有趣的话题是参与这些光化学反应的草酰草酰脲复合物的结构。我们对铀酰离子与草酸根离子的复杂形成提出了不同的观点。基于在丙酮溶液中的光谱测量,我们提出了具有桥接草酸酯基团的二聚体物种,其中每个铀酰单元均为五边形双锥体。此外,在低能量部分强度增加的UV-Vis吸收光谱与具有D2配位对称性的二聚体结构一致。此外,我们认为面外弯曲ν10(D2中的a)可以诱导分子内扭曲机制,从而破坏草酸盐配体。希望将来我们的假设可以通过铀LIII-edge EXAFS光谱学和关于二聚体结构的理论计算得到证实。在我们的研究中已经强调,对于金属与配体的比例为1:2或1:3,不一定形成二或三配合物,这在文献中经常被忽略。假定固体铀酰化合物的溶解与溶液中的固体具有相同的结构,也会犯许多错误。例如,溶解在水溶液中的盐UO2(NO3)2∙6H2O被完全分解,从而形成水合的“游离”铀酰离子。很明显,铀LIII-edge EXAFS光谱学为配合环境的未来工作提供了良好的前景。溶液和离子液体中的铀酰离子含量但是,使用EXAFS光谱仪会遇到一个重要的缺点。如果是物种混合,则EXAFS数据将仅给出平均配位数和键距,这会妨碍对溶液物种结构的阐明。因此,我们建议将UV-Vis吸收光谱法,发光光谱法(如果可能的话)进行圆圆二色性,基团理论分析以及铀LIII-edge EXAFS光谱法,NMR光谱法,理论计算和主成分分析相结合是一个很好的工具阐明几种未知的铀酰配合物的第一配位球的几何形状和组成。通过上述技术的结合来确定非水溶剂中中间形成的氯和硝基的络合物的结构是一个真正的挑战!但是,首先,了解无水乙腈中溶剂化铀酰离子的结构将非常有帮助。

著录项

  • 作者

    Servaes Kelly;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号