首页> 外文OA文献 >Multisite downscaling of seasonal predictions to daily rainfall characteristics over Pacific-Andean River Basins in Ecuador and Peru using a non-homogeneous hidden Markov model
【2h】

Multisite downscaling of seasonal predictions to daily rainfall characteristics over Pacific-Andean River Basins in Ecuador and Peru using a non-homogeneous hidden Markov model

机译:使用非均质隐马尔可夫模型将厄瓜多尔和秘鲁的太平洋-安第斯河流域的季节预报的多站点降尺度为每日降雨特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The seasonal predictability of daily rainfall characteristics is examined over 21 hydrologic units in thePacific–Andean region of Ecuador and Peru (PAEP) using a nonhomogeneous hidden Markov model (NHMM) and retrospective seasonal information from general circulation models GCMs). First, a hidden Markov model is used to diagnose four states that play distinct roles in the December–May rainy season. The estimated daily states fall into two wet states, one dry state, and one transitional dry–wet state, and show a systematic seasonal evolution together with intraseasonal and interannual variability. The first wet state represents regionwide wet conditions, while the second one represents north–south gradients. The former could be associated with the annual moisture offshore of the PAEP, thermally driven by the climatological maximum of sea surface temperatures in the Niño-1.2 region. The latter corresponds with the dynamically noisy component of the PAEP rainfall signal, associated with the annual displacement of the intertropical convergence zone. Then, a four-state NHMM is coupled with GCM information to simulate daily sequences at each station. Simulations of the GCM–NHMM approach represent daily rainfall characteristics at station level well. The best skills were found in reproducing the interannual variation of seasonal rainfall amount and mean intensity at the regional-averaged level with correlations equal to 0.60 and 0.64, respectively. Atcatchment level, the best skills appear over catchments south of 48S, where hydrologically relevant characteristicsare well simulated. It is thus shown that the GCM–NHMM approach provides the potential to produce precipitation information relevant for hydrological prediction in this climate-sensitive region.
机译:使用非均质的隐马尔可夫模型(NHMM)和来自常规环流模型GCM的回顾性季节性信息,对厄瓜多尔和秘鲁的太平洋-安第斯山地区和秘鲁(PAEP)的21个水文单位进行了每日降雨特征的季节可预测性研究。首先,使用隐马尔可夫模型来诊断在12月至5月的雨季发挥不同作用的四个州。估计的每日状态分为两个湿润状态,一个干燥状态和一个过渡干湿状态,并显示出系统的季节演变以及季节内和年际变化。第一个湿态代表整个区域的湿润条件,而第二个湿态代表南北向梯度。前者可能与PAEP近海的年水分有关,这是由Niño-1.2地区海表温度的气候最高气候驱动的。后者对应于PAEP降雨信号的动态噪声分量,该分量与热带辐合带的年位移有关。然后,将四状态NHMM与GCM信息耦合以模拟每个站点的每日序列。 GCM–NHMM方法的模拟代表了站级井的日降雨特征。在再现区域平均水平上季节性降雨量和平均强度的年际变化中发现了最佳技能,其相关性分别等于0.60和0.64。在集水区,最好的技能出现在48S以南的集水区,水文相关特征得到了很好的模拟。因此表明,在这个气候敏感地区,GCM-NHMM方法提供了产生与水文预报有关的降水信息的潜力。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号