首页> 外文OA文献 >Cartesian constrained time-optimal point-to-point motion planning for robots: the waiter problem
【2h】

Cartesian constrained time-optimal point-to-point motion planning for robots: the waiter problem

机译:笛卡尔约束时间最优的点对点机器人运动规划:服务员问题

摘要

Time-optimal point-to-point motion is of significant importance for maximizing the productivity of robot systems. This type of motion planning for robots is however a complex problem and is therefore often solved in two phases. First, a high level planner determines a geometric path ignoring the system dynamics but taking into account geometric path constraints. Second, an optimal trajectory along the geometric path is determined taking into account system dynamics and limitations. Since the dynamics along a geometric path can be described in terms of a scalar path coordinate $s$ and its time derivatives cite{Bobrow1985}, the decoupled approach simplifies the motion planning problem to great extent. In recent work it was shown for a simplified robotic manipulator that the path following problem with Cartesian acceleration constraints can be cast as a convex optimization problem, which allows for the highly efficient computation of the global optimum.In this work we explore ways to solve the motion planning problem in application to the waiter problem. The waiter problem considers moving a non-fixed object time-optimally from an initial pose to a final pose while preventing the object to slide, lift or tip over. This problem is akin to a robot that transports, e.g., a pallet with a loosely stacked payload. In cite{Debrouwere2013} the convex formulation of the path following problem is implemented to solve a simplified version of the waiter problem. Assuming a fixed geometric path, the optimal timing along this path s(t) is determined subject to the earlier outlined criteria. This convex problem can be solved efficiently, but is still conservative. Namely, appropriate tilting of the tray allows reduce the overall motion time. We present attempts to include the shape of the path in the optimization and to implement an efficient solution technique.
机译:时间最佳点对点运动对于最大化机器人系统的生产率至关重要。然而,这种用于机器人的运动计划是一个复杂的问题,因此通常分两个阶段解决。首先,高级计划人员会忽略系统动力学而确定几何路径,但要考虑几何路径约束。其次,考虑系统动力学和局限性,确定沿几何路径的最佳轨迹。由于沿几何路径的动力学可以用标量路径坐标$ s $及其时间导数 cite {Bobrow1985}来描述,因此,解耦方法在很大程度上简化了运动规划问题。在最近的工作中,对于简化的机器人操纵器表明,具有笛卡尔加速度约束的路径跟随问题可以转换为凸优化问题,从而可以高效地计算全局最优值。运动计划问题在服务员问题中的应用。服务员问题考虑将非固定对象从初始姿势最佳时间移动到最终姿势,同时防止对象滑动,抬起或翻倒。该问题类似于运输例如具有松散堆叠的有效载荷的托盘的机器人。在 cite {Debrouwere2013}中,实现了路径遵循问题的凸形式,以解决服务员问题的简化版本。假设几何路径固定,则应遵循前面概述的标准确定沿该路径s(t)的最佳时序。这个凸出的问题可以有效解决,但仍然很保守。即,托盘的适当倾斜允许减少整体运动时间。我们提出了在优化中包括路径形状并实施有效解决方案技术的尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号