首页> 外文OA文献 >High Efficiency Mechanically Stacked Multi-Junction Solar Cells for Concentrator Photovoltaics
【2h】

High Efficiency Mechanically Stacked Multi-Junction Solar Cells for Concentrator Photovoltaics

机译:用于聚光光伏的高效机械堆叠式多结太阳能电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-junction solar cells based on III-V materials have achieved the highest efficiencies of any present photovoltaic technology. Combined with their application in terrestrial concentration systems, multi-junction solar cells offer a promising way towards achieving very low cost per kilowatt hour.The objective of this PhD thesis is to study and develop novel high efficiency Mechanically Stacked Multi-Junction (MSMJ) solar cells. The sub-junctions in a mechanical stack are fabricated separately on their individual substrates and then combined into one single mechanically stacked multi-junction device. As a result, each junction has its own contacts and can be connected separately. In contrast, the Monolithically stacked Multi-Junction (MMJ) solar cells have different solar cell materials grown directly on a single substrate, and connected in series by tunnel diodes. Although currently being state-of-the-art, there are some inherent restrictions for the monolithic design, such as the requirements of current matching and lattice matching. However, mechanically stacked junctions do not suffer from these limitations, and offer a very generic way of realizing multi-junction solar cells. The strongly reduced sensitivity to spectral variations offered by MSMJ solar cells also results in a clear advantage in terms of energy production potential.The main topics of this PhD research include the development of thinned III-V top cells and high flux germanium bottom cells; the development of mechanical stacking technology of the sub-cells and their interconnections; understanding and predicting the performance of the MSMJ solar cells through numerical simulation of the optical, electrical and thermal characteristics of the stack.Very high performance thin film III-V solar cells have been demonstrated, with the best efficiencies of 24.7% for GaAs and 16.7% for InGaP respectively (under AM1.5g), which comes very close to the best standard 1-sun cells fabricated at imec. Ge bottom cells have adopted a deeper and more highly doped emitter profile, optimized for the long wavelength range above 900nm. After the demonstration of individual sub-cells, mechanically stacked GaAs-Ge dual-junction cells and InGaP-GaAs-Ge triple-junction cells are demonstrated as well. Efficiencies of 27.0% (24.7 + 2.3%) under AM1.5g and 31.3% (27.7 + 3.6%) at 29 suns are achieved for the best 2J mechanical stack, while 26.2% (16.5 + 8.40 + 1.28%) under AM1.5g, and 28.2% (17.0 + 9.0 + 2.2%) under 7 suns are realized for the best 3J mechanical stack. The reflection losses and series resistance losses are identified as the biggest losses limiting performance of the realized stacks. Further efficiency improvements are possible, such as using grid designs with finger width of less than 3 µm.In parallel to the practical work, a 2D numerical simulation model has been set up and calibrated with experimental results, in order to understand and predict the performance of the MSMJ solar cells. An efficiency of 32.18% (17.0 + 11.5 + 3.6%, under AM1.5g) is simulated for a mechanically stacked InGaP-GaAs-Ge solar cell. In addition, annual energy production utilizing multi-junction solar cells has been predicted. Detailed balance cell efficiencies are calculated under realistic spectral conditions. For the particular case studied, the MMJ solar cells underperform the MSMJ cells in term of energy production due to the influence of daily and yearly spectral variations.
机译:基于III-V材料的多结太阳能电池已实现了目前任何光伏技术中的最高效率。结合其在地面集中系统中的应用,多结太阳能电池为实现极低的每千瓦时成本提供了一种有前途的方法。本博士学位论文的目的是研究和开发新型高效的机械堆叠多结(MSMJ)太阳能细胞。机械堆叠中的子结分别在各自的基板上制造,然后组合成一个机械堆叠的多结装置。因此,每个结都有自己的触点,可以分别连接。相反,单片堆叠多结(MMJ)太阳能电池具有直接在单个基板上生长的不同太阳能电池材料,并通过隧道二极管串联连接。尽管当前是最先进的,但整体设计还是有一些固有的限制,例如电流匹配和晶格匹配的要求。然而,机械堆叠的结不受这些限制的困扰,并提供了一种实现多结太阳能电池的非常通用的方法。 MSMJ太阳能电池对光谱变化的敏感性大大降低,这在能源生产潜力方面也带来了明显的优势。本博士研究的主要主题包括薄型III-V顶部电池和高通量锗底部电池的开发;子电池及其相互连接的机械堆叠技术的发展;通过对堆叠的光学,电学和热学特性进行数值模拟,了解和预测MSMJ太阳能电池的性能。已经证明了非常高性能的III-V薄膜太阳能电池,GaAs的最佳效率为24.7%,最佳效率为16.7 InGaP的百分比分别为1.5%(低于AM1.5g),非常接近imec制造的最佳标准1-sun电池。 Ge底部电池采用了更深,更掺杂的发射极轮廓,针对900nm以上的长波长范围进行了优化。在展示了各个子电池之后,还展示了机械堆叠的GaAs-Ge双结电池和InGaP-GaAs-Ge三结电池。最佳2J机械堆栈在AM1.5g下的效率为27.0%(24.7 + 2.3%),在29个太阳下的效率为31.3%(27.7 + 3.6%),而在AM1.5g下为26.2%(16.5 + 8.40 + 1.28%) ,在7个阳光下达到28.2%(17.0 + 9.0 + 2.2%)可获得最佳3J机械堆栈。反射损耗和串联电阻损耗被认为是最大损耗,限制了已实现叠层的性能。可能会进一步提高效率,例如使用手指宽度小于3 µm的网格设计。在实际工作中,同时建立了2D数值模拟模型并根据实验结果进行了校准,以了解和预测性能MSMJ太阳能电池。机械堆叠的InGaP-GaAs-Ge太阳能电池的效率为32.18%(在AM1.5g下为17.0 + 11.5 + 3.6%)。另外,已经预测了利用多结太阳能电池的年度能量生产。详细的平衡电池效率是在实际光谱条件下计算的。对于所研究的特定情况,由于日和年光谱变化的影响,MMJ太阳能电池在能量生产方面不如MSMJ电池。

著录项

  • 作者

    Zhao Lu;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号